首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We consider the time-dependent shear flow of an Oldroyd-B fluid with slip along the fixed wall. Slip is allowed by means of a generic slip equation predicting that the shear stress is a non-monotonic function of the velocity at the wall. The complete one-dimensional stability analysis to one-dimensional disturbances is carried out and the corresponding neutral stability diagrams are constructed. Asymptotic results for large values of the elasticity number and finite element calculations are also presented. The instability regimes are within or coincide with the negative-slope regime of the slip equation. The numerical calculations agree with the linear stability results when the size of the initial perturbation is small. Large perturbations may destabilize a linearly stable steady state, leading to a periodic solution. The period and the amplitude of the periodic solutions increase with elasticity. Received: 19 June 1997 Accepted: 22 September 1997  相似文献   

2.
We solve the time-dependent simple shear flow of a Johnson–Segalman fluid with added Newtonian viscosity. We focus on the case where the steady-state shear stress/shear rate curve is not monotonic. We show that, in addition to the standard smooth linear solution for the velocity, there exists, in a certain range of the velocity of the moving plate, an uncountable infinity of steady-state solutions in which the velocity is piecewise linear, the shear stress is constant and the other stress components are characterized by jump discontinuities. The stability of the steady-state solutions is investigated numerically. In agreement with linear stability analysis, it is shown that steady-state solutions are unstable only if the slope of a linear velocity segment is in the negative-slope regime of the shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to a stable steady state. The number of the discontinuity points and the final value of the shear stress depend on the initial perturbation. No regimes of self-sustained oscillations have been found.  相似文献   

3.
We explore a mechanism of extrusion instability, based on the combination of nonlinear slip and compressibility. We consider the time-dependent compressible Newtonian extrudate swell problem with slip at the wall. Steady-state solutions are unstable in regimes where the shear stress is a decreasing function of the velocity at the wall. Compressibility provides the means for the alternate storage and release of elastic energy, and, consequently, gives rise to periodic solutions. The added novelty in the present work is the assumption of periodic volumetric flow rate at the inlet of the die. This leads to more involved periodic responses and to free surface oscillations similar to those observed experimentally with the stick-slip instability. To numerically simulate the flow, we use finite elements in space and a fully-implicit scheme in time.Dedicated to the memory of Prof. Tasos Papanastasiou  相似文献   

4.
We numerically solve the time-dependent planar Poiseuille flow of a Johnson–Segalman fluid with added Newtonian viscosity. We consider the case where the shear stress/shear rate curve exhibits a maximum and a minimum at steady state. Beyond a critical volumetric flow rate, there exist infinite piecewise smooth solutions, in addition to the standard smooth one for the velocity. The corresponding stress components are characterized by jump discontinuities, the number of which may be more than one. Beyond a second critical volumetric flow rate, no smooth solutions exist. In agreement with linear stability analysis, the numerical calculations show that the steady-state solutions are unstable only if a part of the velocity profile corresponds to the negative-slope regime of the standard steady-state shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to different stable steady states, depending on the initial perturbation. The asymptotic steady-state velocity solution obtained in start-up flow is smooth for volumetric flow rates less than the second critical value and piecewise smooth with only one kink otherwise. No selection mechanism was observed either for the final shear stress at the wall or for the location of the kink. No periodic solutions have been found for values of the dimensionless solvent viscosity as low as 0.01.  相似文献   

5.
We solve analytically the cessation flows of a Newtonian fluid in circular and plane Couette geometries assuming that wall slip occurs provided that the wall shear stress exceeds a critical threshold, the slip yield stress. In steady-state, slip occurs only beyond a critical value of the angular velocity of the rotating inner cylinder in circular Couette flow or of the speed of the moving upper plate in plane Couette flow. Hence, in cessation, the classical no-slip solution holds if the corresponding wall speed is below the critical value. Otherwise, slip occurs only initially along both walls. Beyond a first critical time, slip along the fixed wall ceases, and beyond a second critical time slip ceases also along the initially moving wall. Beyond this second critical time no slip is observed and the decay of the velocity is faster. The velocity decays exponentially in all regimes and the decay is reduced with slip. The effects of slip and the slip yield stress are discussed.  相似文献   

6.
The axisymmetric and plane extrusion flows of a liquid foam are simulated assuming that the foam is a homogeneous compressible Newtonian fluid that slips along the walls. Compressibility effects are investigated using both a linear and an exponential equation of state. The numerical results confirm previous reports that the swelling of the extrudate decreases initially as the compressibility of the fluid is increased and then increases considerably. The latter increase is sharper in the case of the exponential equation of state. In the case of non-zero inertia, high compressibility was found to lead to a contraction of the extrudate after the initial expansion, similar to that observed experimentally with liquid foams and to decaying oscillations of the extrudate surface. The time-dependent calculations show that the oscillatory steady-state solutions are stable. These steady-state oscillatory solutions are not affected by the length of the extrudate region nor by the boundary condition along the wall.  相似文献   

7.
We discuss how matrix-free/timestepper algorithms can efficiently be used with dynamic non-Newtonian fluid mechanics simulators in performing systematic stability/bifurcation analysis. The timestepper approach to bifurcation analysis of large-scale systems is applied to the plane Poiseuille flow of an Oldroyd-B fluid with non-monotonic slip at the wall, in order to further investigate a mechanism of extrusion instability based on the combination of viscoelasticity and non-monotonic slip. Due to the non-monotonicity of the slip equation the resulting steady-state flow curve is non-monotonic and unstable steady states appear in the negative-slope regime. It has been known that self-sustained oscillations of the pressure gradient are obtained when an unstable steady state is perturbed [M.M. Fyrillas, G.C. Georgiou, D. Vlassopoulos, S.G. Hatzikiriakos, A mechanism for extrusion instabilities in polymer melts, Polymer Eng. Sci. 39 (1999) 2498–2504].Treating the simulator of a distributed parameter model describing the dynamics of the above flow as an input–output “black-box” timestepper of the state variables, stable and unstable branches of both equilibrium and periodic oscillating solutions are computed and their stability is examined. It is shown for the first time how equilibrium solutions lose stability to oscillating ones through a subcritical Hopf bifurcation point which generates a branch of unstable limit cycles and how the stable periodic solutions lose their stability through a critical point which marks the onset of the unstable limit cycles. This implicates the coexistence of stable equilibria with stable and unstable periodic solutions in a narrow range of volumetric flow rates.  相似文献   

8.
We consider both the planar and axisymmetric steady, laminar Poiseuille flows of a weakly compressible Newtonian fluid assuming that slip occurs along the wall following Navier’s slip equation and that the density obeys a linear equation of state. A perturbation analysis is performed in terms of the primary flow variables using the dimensionless isothermal compressibility as the perturbation parameter. Solutions up to the second order are derived and compared with available analytical results. The combined effects of slip, compressibility, and inertia are discussed with emphasis on the required pressure drop and the average Darcy friction factor.  相似文献   

9.
Elastic effects on the hydrodynamic instability of inviscid parallel shear flows are investigated through a linear stability analysis. We focus on the upper convected Maxwell model in the limit of infinite Weissenberg and Reynolds numbers. We study the effects of elasticity on the instability of a few classes of simple parallel flows, specifically plane Poiseuille and Couette flows, the hyperbolic-tangent shear layer and the Bickley jet.The equation for stability is derived and solved numerically using the spectral Chebyshev collocation method. This algorithm is computationally efficient and accurate in reproducing the eigenvalues. We consider flows bounded by walls as well as flows bounded by free surfaces. In the inviscid, nonelastic case all the flows we study are unstable for free surfaces. In the case of wall bounded flow, there are instabilities in the shear layer and Bickley jet flows. In all cases, the effect of elasticity is to reduce and ultimately suppress the inviscid instability.  相似文献   

10.
Analytical solutions are derived for various start-up Newtonian Poiseuille flows assuming that slip at the wall occurs when the wall shear stress exceeds a critical value, known as the slip yield stress. Two distinct regimes characterise the steady axisymmetric and planar flows, which are defined by a critical value of the pressure gradient. If the imposed pressure gradient is below this critical value, the classical no-slip, start-up solution holds. Otherwise, no-slip flow occurs only initially, for a finite time interval determined by a critical time, after which slip does occur. For the annular case, there is an additional intermediate (steady) flow regime where slip occurs only at the inner wall, and hence, there exist two critical values of the pressure gradient. If the applied pressure gradient exceeds both critical values, the velocity evolves initially with no-slip at both walls up to the first critical time, then with slip only along the inner wall up to the second critical time and finally with slip at both walls.  相似文献   

11.
We consider the Newtonian Poiseuille flow in a tube whose cross-section is an equilateral triangle. It is assumed that boundary slip occurs only above a critical value of the wall shear stress, namely the slip yield stress. It turns out that there are three flow regimes defined by two critical values of the pressure gradient. Below the first critical value, the fluid sticks everywhere and the classical no-slip solution is recovered. In an intermediate regime the fluid slips only around the middle of each boundary side and the flow problem is not amenable to analytical solution. Above the second critical pressure gradient non-uniform slip occurs everywhere at the wall. An analytical solution is derived for this case and the results are discussed.  相似文献   

12.
We investigate the stresses of an upper convected Maxwell fluid in the neighborhood of a re-entrant 270° corner. It is assumed (incorrectly, of course) that the velocity field is Newtonian. Both asymptotic analysis and numerical solutions are presented. It is found that, for a fixed angle, the stresses behave approximately as r−0.74, which contrasts with a behavior as r−0.91 at the walls (the latter is simply the square of the Newtonian shear rate at the wall, where the flow is viscometric). The analysis shows that there are boundary layers near the walls, in which there is a transition from the viscometric behavior at the wall to a core region which the behavior is dominated by the convected derivative in the constitutive equation. Moreover, our computations show large spurious stresses downstream resulting from numerical errors.  相似文献   

13.
Conventional rheometry coupled with local velocity measurements (ultrasonic Doppler velocimetry) are used to study the flow behaviour of various commercial pulp fibre suspensions at fibre mass concentrations ranging from 1 to 5 wt.%. Experimental data obtained using a stress-controlled rheometer by implementing a vane in large cup geometry exhibits apparent yield stress values which are lower than those predicted before mainly due to existence of apparent slip. Pulp suspensions exhibit shear-thinning behaviour up to a high shear rate value after which Newtonian behaviour prevails. Local velocity measurements prove the existence of significant wall slippage at the vane surface. The velocimetry technique is also used to study the influence of pH and lignin content on the flow behaviour of pulp suspensions. The Herschel–Bulkley constitutive equation is used to fit the local steady-state velocity profiles and to predict the steady-state flow curves obtained by conventional rheometry. Consistency between the various sets of data is found for all suspensions studied, including apparent yield stress, apparent wall slip and complete flow curves.  相似文献   

14.
The transient shear response of a linear molten polymer (linear low-density polyethylene) in the nonlinear domain was studied using a true shear (sliding plate) rheometer with different gap spacings to detect slip effects. It was found that nonlinear viscoelasticity is further complicated by wall slip phenomena. Experimental evidence suggested that static slip models coupled with Wagner’s constitutive equation cannot adequately describe the experimental data at large and fast shear deformations. A new dynamic slip model involving multiple slip relaxation times is proposed in this paper, together with a method to assess the model parameters. Significant improvement in predicting the stress response is demonstrated by several examples of start-up of steady shear and large-amplitude oscillatory tests of a linear low-density polyethylene.  相似文献   

15.
A plane steady-state two-layer fluid flow under the coupled action of the buoyancy and Marangoni forces is considered. The system is oriented at an arbitrary angle with respect to the gravity force. Exact solutions generalizing the Ostroumov-Birikh solution are obtained and their stability is studied in the framework of a linear theory. On the basis of numerical calculations, the influence of the inclination angle, the thickness of the layers, and the wall heating conditions on the instability mechanisms is investigated.  相似文献   

16.
The heterogeneity of deformation in ductile FCC single crystals is investigated by both numerical simulations and an analytic approach. The constitutive behaviour is based on a generalized storage recovery model and takes into account the interactions between slip systems previously obtained by dislocation dynamics simulations. In biaxial stretching, the simulations show the activation of a large number of slip systems and their localization in mutually excluding zones. As a result, a microstructure of lamellar type is formed in the early stages of the deformation. These numerical results are complemented by a linear stability analysis showing that the heterogeneous deformation pattern is triggered by instability modes of the single crystal. Furthermore, the interaction matrix is playing a key role as the partition is found to originate from slip system interactions. The partition is driven by the strongest interaction, which is in most cases the collinear interaction. A comparison with an experimental study in simple shear yields useful information about how to check the respective strength of some interactions. The collinear interaction is not involved in that case, but its effect can be verified by reproducing the experiment on a crystal with a different orientation.  相似文献   

17.
Mixed finite-element methods for computation of viscoelastic flows governed by differential constitutive equations vary by the polynomial approximations used for the velocity, pressure, and stress fields, and by the weighted residual methods used to discretize the momentum, continuity, and constitutive equations. This paper focuses on computation of the linear stability of the planar Couette flow as a test of the numerical stability for solution of the upper-convected Maxwell model. Previous theoretical results prove this inertialess flow to be always stable, but that accurate calculation is difficult at high De because eigenvalues with fine spatial structure and high temporal frequency approach neutral stability. Computations with the much used biquadratic finite-element approximations for velocity and deviatoric stress and bilinear interpolation for pressure demonstrate numerical instability beyond a critical value of De for either the explicitly elliptic momentum equation (EEME) or elastic-viscous split-stress (EVSS) formulations, applying Galerkin's method for solution of the momentum and continuity equations, and using streamline upwind Petrov-Galerkin (SUPG) method for solution of the hyperbolic constitutive equation. The disturbance that causes the instability is concentrated near the stationary streamline of the base flow. The removal of this instability in a slightly modified form of the EEME formulation suggests that the instability results from coupling the approximations to the variables. A new mixed finite-element method, EVSS-G, is presented that includes smooth interpolation of the velocity gradients in the constitutive equation that is compatible with bilinear interpolation of the stress field. This formulation is tested with SUPG, streamline upwinding (SU), and Galerkin least squares (GLS) discretization of the constitutive equation. The EVSS-G/SUPG and EVSS-G/SU do not have the numerical instability described above; linear stability calculations for planar Couette flow are stable to values of De in excess of 50 and converge with mesh and time step. Calculations for the steady-state flow and its linear stability for a sphere falling in a tube demonstrate the appearance of linear instability to a time-periodic instability simultaneously with the apparent loss of existence of the steady-state solution. The instability appears as finely structured secondary cells that move from the front to the back of the sphere.Financial support for this research was given by the National Science Foundation, the Office of Naval Research, and the Defense Research Projects Agency. Computational resources were supplied by a grant from the Pittsburgh National Supercomputer Center and by the MIT Supercomputer Facility.  相似文献   

18.
The present work deals with temporal stability properties of a falling liquid film down an inclined plane in the presence of a parallel subsonic gas flow. The waves are described by evolution equation previously derived as a generalization of the model for the Newtonian liquid. We confirm linear stability results of the basic flow using the Orr–Sommerfeld analysis to that obtained by long wave approximation analysis. The non-linear stability criteria of the model are discussed analytically and stability branches are obtained. Finally, the solitary wave solutions at the liquid–gas interface are discussed, using specially envelope transform and direct ansatz approach to Ginzburg–Landau equation. The influence of different parameters governing the flow on the stability behavior of the system is discussed in detail.  相似文献   

19.
The flow of non-Newtonian fluids in annular geometries is an important problem, especially for the extrusion of polymeric melts and suspensions and for oil and gas exploration. Here, an analytical solution of the equation of motion for the axial flow of an incompressible viscoplastic fluid (represented by the Hershel–Bulkley equation) in a long concentric annulus under isothermal, fully developed, and creeping conditions and subject to true or apparent wall slip is provided. The simplifications of the analytical model for Hershel–Bulkley fluid subject to wall slip also provide the analytical solutions for the axial annular flows of Bingham plastic, power-law, and Newtonian fluids with and without wall slip at one or both surfaces of the annulus.  相似文献   

20.
New and simpler exact solutions corresponding to the second problem of Stokes for Newtonian fluids are established by the Laplace transform method. These solutions, presented as a sum of the steady-state and transient solutions are in accordance with the previous results (see Figs. 1-4). The amplitudes of the wall shear stresses corresponding to the cosine and sine oscillations are almost identical, except for a small initial time interval. The time required to attain the steady-state for the cosine oscillations of the boundary is smaller than that for the sine oscillations of the boundary. This time decreases if the frequency of the velocity of the boundary increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号