首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
The recent developments in smart structures technology have stimulated renewed interest in the fundamental theory and applications of linear piezoelectricity. In this paper, we investigate the decay of Saint-Venant end effects for plane deformations of a piezoelectric semi-infinite strip. First of all, we develop the theory of plane deformations for a general anisotropic linear piezoelectric solid. Just as in the mechanical case, not all linear homogeneous anisotropic piezoelectric cylindrical solids will sustain a non-trivial state of plane deformation. The governing system of four second-order partial differential equations for the two in-plane displacements and electric potential are overdetermined in general. Sufficient conditions on the elastic and piezoelectric constants are established that do allow for a state of plane deformation. The resulting traction boundary-value problem with prescribed surface charge is an oblique derivative boundary-value problem for a coupled elliptic system of three second-order partial differential equations. The special case of a piezoelectric material transversely isotropic about the poling axis is then considered. Thus the results are valid for the hexagonal crystal class 6mm. The geometry is then specialized to be a two-dimensional semi-infinite strip and the poling axis is the axis transverse to the longitudinal direction. We consider such a strip with sides traction-free, subject to zero surface charge and self-equilibrated conditions at the end and with tractions and surface charge assumed to decay to zero as the axial variable tends to infinity. A formulation of the problem in terms of an Airy-type stress function and an induction function is adopted. The governing partial differential equations are a coupled system of a fourth and third-order equation for these two functions. On seeking solutions that exponentially decay in the axial direction one obtains an eigenvalue problem for a coupled system of fourth and second-order ordinary differential equations. This problem is the piezoelectric analog of the well-known eigenvalue problem arising in the case of an anisotropic elastic strip. It is shown that the problem can be uncoupled to an eigenvalue problem for a single sixth-order ordinary differential equation with complex eigenvalues characterized as roots of transcendental equations governing symmetric and anti-symmetric deformations and electric fields. Assuming completeness of the eigenfunctions, the rate of decay of end effects is then given by the real part of the eigenvalue with smallest positive real part. Numerical results are given for PZT-5H, PZT-5, PZT-4 and Ceramic-B. It is shown that end effects for plane deformations of these piezoceramics penetrate further into the strip than their counterparts for purely elastic isotropic materials.  相似文献   

2.
Recently, a paper about the Nth-order rogue waves for an inhomogeneous higher-order nonlinear Schrödinger equation using the generalized Darboux transformation is published. Song et al. (Nonlinear Dyn 82(1):489–500. doi: 10.1007/s11071-015-2170-6, 2015). However, the inhomogeneous equation which admits a nonisospectral linear eigenvalue problem is mistaken for having a constant spectral parameter by the authors. This basic error causes the results to be wrong, especially regarding the Darboux transformation (DT) in Sect. 2 when the inhomogeneous terms are dependent of spatial variable x. In fact, the DT for inhomogeneous equation has an essential difference from the isospectral case, and their results are correct only in the absence of inhomogeneity which was already discussed in detail before. Consequently, we firstly modify the DT based on corresponding nonisospectral linear eigenvalue problem. Then, the nonautonomous solitons are obtained from zero seed solutions. Properties of these solutions in the inhomogeneous media are discussed graphically to illustrate the influences of the variable coefficients. Finally, the failure of finding breather and rogue wave solutions from this modified DT is also discussed.  相似文献   

3.
T.C.T. Ting 《Wave Motion》2011,48(4):335-344
In a recent paper Destrade [1] studied surface waves in an exponentially graded orthotropic elastic material. He showed that the quartic equation for the Stroh eigenvalue p is, after properly modified, a quadratic equation in p2 with real coefficients. He also showed that the displacement and the stress decay at different rates with the depth x2 of the half-space. Vinh and Seriani [2] considered the same problem and added the influence of gravity on surface waves. In this paper we generalize the problem to exponentially graded general anisotropic elastic materials. We prove that the coefficients of the sextic equation for p remain real and that the different decay rates for the displacement and the stress hold also for general anisotropic materials. A surface wave exists in the graded material under the influence of gravity if a surface wave can propagate in the homogeneous material without the influence of gravity in which the material parameters are taken at the surface of the graded half-space. As the wave number k → ∞, the surface wave speed approaches the surface wave speed for the homogeneous material. A new matrix differential equation for surface waves in an arbitrarily graded anisotropic elastic material under the influence of gravity is presented. Finally we discuss the existence of one-component surface waves in the exponentially graded anisotropic elastic material with or without the influence of gravity.  相似文献   

4.
Abstract

In this paper we study the elasticity problem of a cylindrically anisotropic, elastic medium bounded by two axisymmetric cylindrical surfaces subjected to normal piessures (plane strain). The material of the structure is orthotropic with cylindrical anisotropy and, in addition, is continuously inhomogeneous with mechanical properties varying along the radius. General solutions in terms of Whittaker functions are presented. The results obtained by St. Venant for a homogeneous cylindrically anisotropic medium can be deduced from the general solutions. The problem of a solid cylinder of the same medium under the external pressure is also solved as a particular case of the above problem. Problems of the type covered in this paper are encountered in nuclear reactor design.  相似文献   

5.
Summary The aim of this paper is (1) to develop a rational method for the analysis of an arbitrarily laminated elastic, isotropic or transversely isotropic hollow sphere under internal and/or external pressure, (2) to solve the problem of a periodically layered sphere consisting of many equal groups of n different thin layers. The transfer matrix method is used, and exact closed-form solutions are worked out, supplemented by a numerical example. It turns out that by means of the proposed homogenization an originally (periodically) inhomogeneous isotropic sphere is replaced by a homogeneous anisotropic one belonging to the type of spherical symmetric anisotropy. Received 20 October 1997; accepted for publication 15 December 1997  相似文献   

6.
A hyperelastic material is here said to be of class Hm if the elastic potential is a homogeneous function of order m + 1 in the components of the Lagrangian displacement gradient. It is shown that a single solution to a boundary value problem generates an infinite family of solutions to a family of related boundary value problems. Assuming that a solution to a boundary value problem exists, it is shown that it is unique provided that the material is stable in the sense of Hill in a deleted neighbourhood of the stress-free state. A minimum theorem concerning the strain energy and the virtual work of the prescribed forces is established for the equilibrium configurations, and a maximum theorem concerning the virtual work of the prescribed surface displacements and the complementary stress energy is established for compatible stress fields. As an application, upper and lower bounds are found for the torsional stiffness of a cylindrical bar of square cross section under infinitesimal deformation.  相似文献   

7.
Based upon linear fracture mechanics, it is well known that the singular order of stresses near the crack tip in homogeneous materials is a constant value −1/2, which is nothing to do with the material properties. For the interface cracks between two dissimilar materials, the near tip stresses are oscillatory due to the order of singularity being −1/2 ± iε and −1/2. The oscillation index ε is a constant related to the elastic properties of both materials. While for the general interface corners, their singular orders depend on the corner angle as well as the elastic properties of the materials. Owing to the difference of the singular orders of homogeneous cracks, interface cracks and interface corners, their associated stress intensity factors are usually defined separately and even not compatibly. Since homogenous cracks and interface cracks are just special cases of interface corners, in order to build a direct connection among them a unified definition for their stress intensity factors is proposed in this paper. Based upon the analytical solutions obtained previously for the multibonded anisotropic wedges, the near tip solutions for the general interface corners have been divided into five different categories depending on whether the singular order is distinct or repeated, real or complex. To provide a stable and efficient computing approach for the general mixed-mode stress intensity factors, the path-independent H-integral based on reciprocal theorem of Betti and Rayleigh is established in this paper. The complementary solutions needed for calculation of H-integral are also provided in this paper. To illustrate our results, several different kinds of examples are shown such as cracks in homogenous isotropic or anisotropic materials, central or edge notches in isotropic materials, interface cracks and interface corners between two dissimilar materials.  相似文献   

8.
This paper considers the plane stress problem of generally anisotropic beams with elastic compliance parameters being arbitrary functions of the thickness coordinate. Firstly, the partial differential equation, which is satisfied by the Airy stress function for the plane problem of anisotropic functionally graded materials and involves the effect of body force, is derived. Secondly, a unified method is developed to obtain the stress function. The analytical expressions of axial force, bending moment, shear force and displacements are then deduced through integration. Thirdly, the stress function is employed to solve problems of anisotropic functionally graded plane beams, with the integral constants completely determined from boundary conditions. A series of elasticity solutions are thus obtained, including the solution for beams under tension and pure bending, the solution for cantilever beams subjected to shear force applied at the free end, the solution for cantilever beams or simply supported beams subjected to uniform load, the solution for fixed–fixed beams subjected to uniform load, and the one for beams subjected to body force, etc. These solutions can be easily degenerated into the elasticity solutions for homogeneous beams. Some of them are absolutely new to literature, and some coincide with the available solutions. It is also found that there are certain errors in several available solutions. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a functionally graded anisotropic cantilever beam.  相似文献   

9.
The static boundary value problems of plane elasticity for an inhomogeneous anisotropic medium in a simply connected domain are reduced to the Riemann–Hilbert problem for a quasianalytic vector. Singular integral equations over the domain are obtained, and their solvability is proved for a sufficiently wide anisotropy class. In the case of a homogeneous anisotropic body, the solutions of the first and second boundary value problems are obtained in closed form.  相似文献   

10.
In the present paper the elastostatic problem of a generally anisotropic and angularly inhomogeneous plane wedge loaded at its apex by a concentrated force, is studied in linear elasticity. At first the self-similarity property is formulated and the stress field of the inhomogeneous anisotropic self-similar wedge problem, is deduced. The wedge is radially separated and the plane wedge problem is reformulated by the introduction of a characteristic vector. Furthermore, the angular distribution of the load is determined. The multi-material wedge problem in terms of a formulation based on the isotropic angularly inhomogeneous wedge, is confronted, and necessary conditions that ensure the self-similarity property, are found. Finally, the similar elastostatic wedge problems and the involution between stresses, are studied. Mathematics Subject Classifications (2000) 74B05, 74K30, 34B05, 51N15.  相似文献   

11.
The eigenvalue problem about a nonhomogeneous semi-infinite strip is investigated using the methodology proposed by Papkovich and Fadle for homogeneous plane problems. Two types of nonhomogeneity are considered: (i) the elastic modulus varying with the thickness coor- dinate x exponentially, (ii) it varying with the length coordinate y exponentially. The eigenvalues for the two cases are obtained numerically in plane strain and plane stress states, respectively. By considering the smallest positive eigenvalue, tile Saint-Venant Decay rates are estimated, which indicates material nonhomogeneity has a signifcant influence on the Saint-Venant end effect.  相似文献   

12.
A numerical method using a path-independent H-integral based on the conservation integral was developed to analyze the singular stress field of a three-dimensional interfacial corner between anisotropic bimaterials under thermal stress. In the present method, the shape of the corner front is smooth. According to the theory of linear elasticity, asymptotic stress near the tip of a sharp interfacial corner is generally singular as a result of a mismatch of the materials’ elastic constants. The eigenvalues and the eigenfunctions are obtained using the Williams eigenfunction method, which depends on the anisotropic materials’ properties and the geometry of an interfacial corner. The order of the singularity related to the eigenvalue is real, complex or power-logarithmic. The amplitudes of the singular stress terms can be calculated using the H-integral. The stress and displacement around an interfacial corner for the H-integral are obtained using finite element analysis. In this study, a proposed definition of the stress intensity factors of an interfacial corner, which includes those of an interfacial crack and a homogeneous crack, is used to evaluate the singular stress fields. Asymptotic solutions of stress and displacement around an interfacial corner front are uniquely obtained using these stress intensity factors. To prove the accuracy of the present method, several different kinds of examples are shown such as interfacial corners or cracks in three-dimensional structures.  相似文献   

13.
The integral equation method is presented for elastodynamic problems of inhomogeneous anisotropic bodies. Since fundamental solutions are not available for general inhomogeneous anisotropic media, we employ the fundamental solution for homogeneous elastostatics. The terms induced by material inhomogeneity and inertia force are regarded as body forces in elastostatics, and evaluated in the form of volume integrals. The scattering problems of elastic waves by inhomogeneous anisotropic inclusions are investigated for some test cases. Numerical results show the significant effects of inhomogeneity and anisotropy of materials on wave propagations.  相似文献   

14.
The problem of finding the stress field induced in the neighbourhood of two spherical gas bubbles or voids in an anisotropic matrix is formulated in terms of an integral equation for the “transformation stress” in equivalent homogeneous inclusions. An iterative method of solution is outlined, involving the solution of a class of problems for a single spherical inclusion perturbing a polynomial field of stress. Explicit solutions are obtained for polynomials up to second degree. Estimates of the energy of interaction between gas bubbles in α-U and between voids in Mo are deduced as examples, and the results are discussed in relation to earlier calculations and to observations.  相似文献   

15.
In this study the generally anisotropic and angularly inhomogeneous wedge, under power law tractions of order n of the radial coordinate r at its external faces is considered. At first, using variable separable relations in the equilibrium equations, the strain–stress relations and the strain compatibility equation, a differential system of equations is constructed and investigated. Decoupling this system, an ordinary differential equation is derived and the stress and displacement fields may be determined. The proposed procedure is also applied to the elastostatic problem of an isotropic and angularly inhomogeneous wedge. In the sequel William's asymptotic analysis in the case of angular inhomogeneity is examined. Finally, applications for the case of an angularly inhomogeneous wedge-shape dam and for the asymptotic procedure in an isotropic wedge with angularly varying shear modulus, are made.  相似文献   

16.
The Stroh formalism is extended to provide a new class of three-dimensional solutions for the generally anisotropic elastic material that have polynomial dependence on x3, but which have quite general form in x1,x2. The solutions are obtained by a sequence of partial integrations with respect to x3, starting from Stroh's two-dimensional solution. At each stage, certain special functions have to be introduced in order to satisfy the equilibrium equation. The method provides a general analytical technique for the solution of the problem of the prismatic bar with tractions or displacements prescribed on its lateral surfaces. It also provides a particularly efficient solution for three-dimensional boundary-value problems for the half-space. The method is illustrated by the example of a half-space loaded by a linearly varying line force.  相似文献   

17.
Non-linear boundary value problems for inelastic isotropic homogeneous incompressible bending plate, within the range of J2-deformation theory, are considered. An existence of the weak solution of the non-linear problem with clamped boundary condition is obtained in H2(Ω) by using monotone operator theory and Browder-Minty theorem. For linearization of the non-linear problem a monotone iteration scheme is constructed. It is shown that the sequence of potentials obtained from the sequence of approximate solutions (i.e. iterations), is a monotone decreasing one. Convergence of the iteration process in H2-norm is proved by using the convexity argument. Numerical solutions, based on finite-difference scheme, are given for linear bending problems with rigid clamped as well as simply supported boundary conditions. Further numerical examples are presented to illustrate the convergence of approximate solutions and monotonicity of the potentials as applied to the non-linear problems.  相似文献   

18.
两种各向异性材料界面共线裂纹的反平面问题   总被引:2,自引:1,他引:2  
本文研究两种各向异性材料界面共线裂纹的反平面剪切问题。利用复变函数方法,提出了一般问题公式和某些实际重要问题的封闭形式解。考察了裂纹尖端附近的应力分布并给出了应力强度因子公式。从本文解签的特殊情形,可以直接导出两种各向同性材料界面裂纹,均匀各向异性材料共线裂纹以及均匀各向同性材料共线裂纹的相应问题公式,其中包括已有的经典结果。  相似文献   

19.
The problem of the uniqueness of elastostatic solutions to various boundary value problems involving unbounded two- and three-dimensional bodies is considered. The general boundary value problem is first considered for anisotropic bodies on which the elasticity tensor is uniformly positive definite. The displacement problem is then considered for the cases where the body is homogeneous and isotropic and the elasticity tensor is strongly-elliptic. Finally, the traction problem on homogeneous, isotropic bodies is considered with fairly little restriction placed on the Lamé moduli. In the first two cases no restriction is placed on the geometry of the body other than the normal assumptions allowing for the use of the divergence theorem. For the traction problem, however, it is assumed that one component of the outward normal to the boudary of the body almost never vanishes. In each case it is shown that the desired uniqueness results hold with fairly mild restrictions placed on the displacement or stress fields (depending on the problem) in a neighborhood of infinity. Where possible, the results are shown to hold even though the solutions may possess the sort of discontinuities and singularities commonly found in problems involving cracks, corners, and bonded interfaces.Related results involving the insolvability of certain non-trivial boundary value problems and the behavior of certain elastic states are, where appropriate, developed.  相似文献   

20.
This paper presents the explicit forms of singular electro-mechanical field in a piezoelectric bonded wedge subjected to antiplane shear loads. Based on the complex potential function associated with eigenfunction expansion method, the eigenvalue equations are derived analytically. Contrary to the anisotropic elastic bonded wedge, the results of this problem show that the singularity orders are single-root and may be complex. The stress intensity factors of electrical and mechanical fields are dependent. However, when the wedge angles are equal (α=β), the orders become real and double-root. The real stress intensity factors of electrical and mechanical fields are then independent. The angular functions have been validated when they are compared with the results of several degenerated cases in open literatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号