首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The spline finite strip method(PSM) is one of the most popular numerical methods for analyzing prismatic structures.Efficacy and convergence of the method have been demonstrated in previous studies by comparing only numerical results with analytical results of some benchmark problems.To date,no exact solutions of the method or its explicit forms of error terms have been derived to show its convergence analytically. As such,in this paper,the mathematical exact solutions of spline finite strips in the plat...  相似文献   

2.
The method developed in this paper is inspired by the siewpoint in ref. [1] that sufficient attention has not been paid to the value of the generalized variational principle in dealing with the houndary conditions in the finite element method. This method applies the generalized variational principle and chooses the series constituted by spline function multiplied by sinusoidal function and added by polynomial as the approximate deflection of plates and shells. By taking the deflection problem of thin plate, it shows that this method can solve the coupling problem in the finite element-semianalytical method. compared with the finite element method and finite stripe method, this method has much fewer unknown variables and higher precision. Hence, it proposer an effective way to solve this kind of engineering problems by minicomputer.  相似文献   

3.
The subject discussed in this paper is the rectangular plate.Its two opposite edges are simply supported,while the othertwo are arbitrary,and the rigidity of the plate is variablealong the direction parallel to the simply supported edges.In order to solve the problem,the author adopts the finiteplate-strip element method,which is different from theusual finite element method or the finite strip method.Thesteps of the above method is no longer to establish a rigidi-ty matrix for elements or strips and gather them into a totalmatrix for solution.Now the relation of transfer betweenthe strain and inner force of every plate-strip is shown.Fi-nally a practical example is given and this method is foundto be easier and more effective.  相似文献   

4.
The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for calculations of spring deformations with the rigid finite element method used to reflect mass and geometrical features,which is called the hybrid finite element method.As a result,a model with a diagonal mass matrix is obtained.Due to a specific geometry of the electrodes,which are long plates of complicated shapes,the second method proposed is the strip method which is a semi-analytical method.The strip method allows us to formulate the equations of motion with a considerably smaller number of generalized coordinates.Results of numerical calculations obtained by both methods are compared with those obtained using commercial software like ANSYS and ABAQUS.Good compatibility of results is achieved.  相似文献   

5.
In this paper,a 13-node pyramid spline element is derived by using the tetrahedron volume coordinates and the B-net method,which achieves the second order completeness in Cartesian coordinates.Some appropriate examples were employed to evaluate the performance of the proposed element.The numerical results show that the spline element has much better performance compared with the isoparametric serendipity element Q20 and its degenerate pyramid element P13 especially when mesh is distorted,and it is comparable to the Lagrange element Q27.It has been demonstrated that the spline finite element method is an efficient tool for developing high accuracy elements.  相似文献   

6.
In this paper, Von Karman ’s set of nonlinear equations for rectangular plates with large deflection is divided into several sets of linear equations by perturbation method, the dimensionless center deflection being taken as a perturbation parameter. These sets of linear equations are solved by the spline finite-point (SFP) method and by the spline finite element (SFE) method. The solutions for rectangular plates having any length-to-width ratios under a uniformly distributed load and with various boundary conditions are presented, and the analytical formulas for displacements and deflections are given in the paper. The computer programs are worked out by ourselves. Comparison of the results with those in other papers indicates that the results of this paper are satisfactorily better.  相似文献   

7.
In general, triangular and quadrilateral elements are commonly applied in two-dimensional finite element methods. If they are used to compute polycrystalline materials, the cost of computation can be quite significant. Polygonal elements can do well in simulation of the materials behavior and provide greater flexibility for the meshing of complex geometries. Hence, the study on the polygonal element is a very useful and necessary part in the finite element method. In this paper, an n-sided polygonal element based on quadratic spline interpolant, denoted by PS2 element, is presented using the triangular area coordinates and the B-net method. The PS2 element is conforming and can exactly model the quadratic field. It is valid for both convex and non-convex polygonal element, and insensitive to mesh distortions. In addition, no mapping or coordinate transformation is required and thus no Jacobian matrix and its inverse are evaluated. Some appropriate examples are employed to evaluate the performance of the proposed element.  相似文献   

8.
A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.  相似文献   

9.
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.  相似文献   

10.
An enriched goal-oriented error estimation method with extended degrees of freedom is developed to estimate the error in the continuum-based shell extended finite element method. It leads to high quality local error bounds in three-dimensional fracture mechanics simulation which involves enrichments to solve the singularity in crack tip. This enriched goal-oriented error estimation gives a chance to evaluate this continuum- based shell extended finite element method simulation. With comparisons of reliability to the stress intensity factor calculation in stretching and bending, the accuracy of the continuum-based shell extended finite element method simulation is evaluated, and the reason of error is discussed.  相似文献   

11.
An H~1 space-time discontinuous Galerkin (STDG) scheme for convectiondiffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H~1 Galerkin method and the space-time discontinuous finite element method that is discontinuous in time and continuous in space. The existence and the uniqueness of the approximate solution are proved. The convergence of the scheme is analyzed by using the techniques in the finite difference and finite element methods. An optimal a-priori error estimate in the L~∞ (H~1 ) norm is derived. The numerical exper- iments are presented to verify the theoretical results.  相似文献   

12.
In this paper a new finite element method is presented.in which complex functions arechosen to be the finite element model and the partitioning concept of the generalizedvariational method is utilized.The stress concentration factors for a finite holed platewelded by a stiffener are calculated and the analytical solutions in series form are obtained.From some computer trials it is demonstrated that the problem of displacementcompatibility and continuity of tractions between the holed plate and the stiffener issuccessfully analysed by using this method.Since only three elements need to beformulated.relatively less storage is required than the usual finite element methods.Furthermore,the accurary of solutions is improved and the computer time requirements areconsiderably reduced.Numerical results of stress concentration factors and stresses alongthe welded-line which may be referential to engineers are shown in tables.  相似文献   

13.
In this paper interfacial edge crack problems are considered by the application of the finite element method. The stress intensity factors are accurately determined from the ratio of crack-tip-stress value between the target given unknown and reference problems. The reference problem is chosen to produce the singular stress fields proportional to those of the given unknown problem. Here the original proportional method is improved through utilizing very refined meshes and post-processing technique of linear extrapolation. The results for a double-edge interface crack in a bonded strip are newly obtained and compared with those of a single-edge interface crack for different forms of combination of material. It is found that the stress intensity factors should be compared in the three different zones of relative crack lengths. Different from the case of a cracked homogeneous strip, the results for the double edge interface cracks are found to possibly be bigger than those for a single edge interface crack under the same relative crack length.  相似文献   

14.
The Voronoi cell finite element method (VCFEM) is adopted to overcome the limitations of the classic displacement based finite element method in the numerical simulation of heterogeneous materials. The parametric variational principle and quadratic programming method are developed for elastic-plastic Voronoi finite element analysis of two-dimensional problems. Finite element formulations are derived and a standard quadratic programming model is deduced from the elastic-plastic equations. Influence of microscopic heterogeneities on the overall mechanical response of heterogeneous materials is studied in detail. The overall properties of heterogeneous materials depend mostly on the size, shape and distribution of the material phases of the microstructure. Numerical examples are presented to demonstrate the validity and effectiveness of the method developed.  相似文献   

15.
A new wavelet-based finite element method is proposed for solving the Poisson equation. The wavelet bases of Hermite cubic splines on the interval are employed as the multi-scale interpolation basis in the finite element analysis. The lifting scheme of the wavelet-based finite element method is discussed in detail. For the orthogonal characteristics of the wavelet bases with respect to the given inner product, the corresponding multi-scale finite element equation can be decoupled across scales, totally or partially, and suited for nesting approximation. Numerical examples indicate that the proposed method has the higher efficiency and precision in solving the Poisson equation.  相似文献   

16.
Isopaxametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17onode quadrilateral element has been developed using the bivaxiate quaxtic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.  相似文献   

17.
This paper applies the stochastic finite element method to analyse thestatistics of stresses in earth dams and assess the safety and reliability of the dams.Formulations of the stochastic finite element method are briefly reviewed and theprocedure for assessing dam's strength and stability is described.As an example,adetailed analysis for an actual dam-Nululin dam is performed.A practical method forstudying built-dams based on the prototype observation data is described.  相似文献   

18.
The acoustical scattering by a cracked elastic structure is studied. The mixed method of boundary element and fractal finite element is adopted to solve the cracked structure-acoustic coupling problem. The fractal two-level finite element method is employed for the cracked structure, which can reduce the degree of freedoms (DOFs) greatly, and the boundary element method is used for the exterior acoustic field which can automatically satisfy Sommerfeld‘s radiation condition. Numerical examples show that the resonance frequency is lower with the crack‘s depth increase, and that the effect on the acoustical field by the crack is particularly pronounced in the vicinity of the crack tip. This mixed method of boundary element and finite element is effective in solving the scattering problem by a cracked structure.  相似文献   

19.
In this paper two theorems with theoretical and practical significance are given in respect to the preconditioned conjugate gradient method(PCCG).The theorems discuss respectively the qualitative property of the iterative solution and the construction principle of the iterative matrix.The authors put forward a new incompletely LU factorizing technique for non-M-matrix and the method of constructing the iterative matrix.This improved PCCG is used to calculate the ill-conditioned problems and large-scale three-dimensional finite element problems,and simultaneously contrasted with other methods.The abnormal phenomenon is analyzed when PCCG is used to solve the system of ill-conditioned equations,It is shown that the method proposed in this paper is quite effective in solving the system of large-scale finite element equations and the system of ill-conditioned equations.  相似文献   

20.
An unstructured finite volume time domain method (UFVTDM) is proposed to simulate stress wave propagation. The original variables of displacement and stress are solved based on the dynamic equilibrium equations. An Euler explicit and unstructured finite volume method is used for time and spacial terms respectively. The displacements are stored on the cell vertex and a vertex based finite volume is formed with the integral surface and the stress is assumed as uniform in the cell. This is some similar with the stager grid method in computational fluid dynamics. Several cases are used to show the capability of the algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号