首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
改进的移动最小二乘法   总被引:6,自引:2,他引:4  
陈美娟  程玉民 《力学季刊》2003,24(2):266-272
近年来发展的无网格方法大多采用移动员小二乘法来构造试函数,而应用移动最小二乘法形成的方程组有时会是病态的甚至奇异的,从而限制了它的发展和应用。本文采用带权正交函数作为基函数对移动最小二乘法做了改进,避免出现病态方程组,且在计算过程中不需要进行短阵求逆运算,提高了计算速度。之后,借鉴牛顿法、平衡法和摄动法对由移动最小二乘法得到的非线性代数方程组提出了新的求解方法。  相似文献   

2.
张衡 《计算力学学报》2017,34(5):672-676
大型病态稀疏线性方程组的求解是科学计算和工程应用中的重要问题之一,采用预处理方法,通过降低条件数来减少病态是解决这一问题的关键。基于3次Lagrange形函数,用有限元方法将积分形式两点边值问题的求解转化成病态七对角方程组的求解。通过研究该方程组的特殊结构,分析了该方程的条件数,找到产生病态的因子(致病因子)。将系数矩阵的大范数部分分解成几个简单矩阵的特殊组合,基于这种特殊分解,设计出预条件子(去病因子),并对预条件子的性能进行了定量分析。结果表明,该预条件子的使用几乎不增加迭代的计算量,预处理后的条件数接近1。  相似文献   

3.
In this paper, a parallel algorithm with iterative form for solving finite element equation is presented. Based on the iterative solution of linear algebra equations, the parallel computational steps are introduced in this method. Also by using the weighted residual method and choosing the appropriate weighting functions, the finite element basic form of parallel algorithm is deduced. The program of this algorithm has been realized on the ELXSI-6400 parallel computer of Xi'an Jiaotong University. The computational results show the operational speed will be raised and the CPU time will be cut down effectively. So this method is one kind of effective parallel algorithm for solving the finite element equations of large-scale structures.  相似文献   

4.
In this paper, we discuss various techniques for solving the system of linear equations that arise from the discretization of the incompressible Stokes equations by the finite‐element method. The proposed solution methods, based on a suitable approximation of the Schur‐complement matrix, are shown to be very effective for a variety of problems. In this paper, we discuss three types of iterative methods. Two of these approaches use the pressure mass matrix as preconditioner (or an approximation) to the Schur complement, whereas the third uses an approximation based on the ideas of least‐squares commutators (LSC). We observe that the approximation based on the pressure mass matrix gives h‐independent convergence, for both constant and variable viscosity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A precondition for the Gauss–Seidel iterative method to solve a linear system of equations arising from the boundary element method for the Laplace and convective diffusion with first-order reaction problems is presented in this paper. The present precondition is based on the elementary matrix operation. We discuss the effect of the precondition in comparison with the Gauss elimination (GE) method in some numerical experiments.  相似文献   

6.
胡凯  高效伟  徐兵兵 《力学学报》2022,54(7):2050-2058
单元微分法是一种新型强形式有限单元法. 与弱形式算法相比, 该算法直接对控制方程进行离散, 不需要用到数值积分. 因此该算法有较简单的形式, 并且其在计算系数矩阵时具有极高的效率. 但作为一种强形式算法, 单元微分法往往需要较多网格或者更高阶单元才能达到满意的计算精度. 与此同时, 对于一些包含奇异点的模型, 如在多材料界面、间断边界条件、裂纹尖端等处, 传统单元微分法往往得不到较精确的计算结果. 为了克服这些缺点, 本文提出了将伽辽金有限元法与单元微分法相结合的强?弱耦合算法, 即整体模型采用单元微分法的同时, 在奇异点附近或某些关键部件采用有限元法. 该策略在保留单元微分法高效率与简洁形式等优点的同时, 确保了求解奇异问题的精度. 在处理大规模问题时, 针对关键部件采用有限元法, 其他部件采用单元微分法, 可以在得到较精确结果的同时, 极大提高整体计算效率. 在本文中, 给出了两个典型算例, 一个是具有切口的二维问题, 一个是复杂的三维发动机问题. 针对这两个问题, 分析了该耦合算法在求二维奇异问题和三维大规模问题时的精度与效率.   相似文献   

7.
一种空间缆索结构静力分析的解析元法   总被引:1,自引:0,他引:1  
将空间缆索结构简化为具有拉伸刚度的质点系,给出了缆索结构空间解析元法的基本方程和求解方法,单元间的作用力与坐标变化的关系可以用解析法得到,对所得到的反映结构特性的质点系方程组进行力的平衡迭代,求解方程组.采用自动的动态可变步长的迭代方法,能够提高计算效率,保证收敛.这种方法既考虑了几何非线性,又适用于材料非线性的计算,比有限元法优越之处还在于,它不用求解线性方程组,所以适用范围广,允许求解多自由度的几何可变体系,而有限元法在求解此类问题时经常不收敛.  相似文献   

8.
This paper presents results of an ongoing research program directed towards developing fast and efficient finite element solution algorithms for the simulation of large-scale flow problems. Two main steps were taken towards achieving this goal. The first step was to employ segregated solution schemes as opposed to the fully coupled solution approach traditionally used in many finite element solution algorithms. The second step was to replace the direct Gaussian elimination linear equation solvers used in the first step with iterative solvers of the conjugate gradient and conjugate residual type. The three segregated solution algorithms developed in step one are first presented and their integrity and relative performance demonstrated by way of a few examples. Next, the four types of iterative solvers (i.e. two options for solving the symmetric pressure type equations and two options for solving the non-symmetric advection–diffusion type equations resulting from the segregated algorithms) together with the two preconditioning strategies employed in our study are presented. Finally, using examples of practical relevance the paper documents the large gains which result in computational efficiency, over fully coupled solution algorithms, as each of the above two main steps are introduced. It is shown that these gains become increasingly more dramatic as the complexity and size of the problem is increased.  相似文献   

9.
本文利用Green第二公式,将Reynolds方程转化为沿边界的积分方程,并将非线性项作为自由项的一部分处理,采用常单元离散边界Γ,用迭代技术求出油膜压力分布,与有限差分法和有限元法比较,边界元法的结果更接近解析解.  相似文献   

10.
一种单元谐波平衡法   总被引:1,自引:0,他引:1  
韩景龙  朱德懋 《力学学报》1999,31(6):753-760
基于有限元离散,对于工程中的非线性响应问题,提出一种单元谐波平衡法.与常规的谐波平衡法不同,本文将谐波平衡方程建立在有限元素上,从而兼顾了有限元素法和常规谐波平衡法两大优势.有限元技术的应用能使得求解问题的范围扩大到复杂工程结构,而谐波平衡概念的使用将使得含有复杂变形和复杂本构关系的动力学响应问题得到有效解决.所提方法能适用于工程结构中具有复杂非线性关系的动力学响应问题.由于谐波平衡法的实施依赖于谐波系数方程及其切线刚度矩阵的解析推导,尽管已经局限到有限元素上,但对于较为复杂一些的本构关系,推导仍非易事.为解决这些问题,放弃通常对于变形梯度和应变张量所作的向量假设,而是从连续介质力学中基本的几何关系入手,提出一种矩阵分解形式.通过利用张量的内蕴导数定义以及关于迹函数的有关性质,给出应力增量的一种新的表现形式.当它与变形梯度的矩阵分解相结合时,使得切线刚度矩阵的导出变得十分简单,而且所得计算形式也比通常紧凑和方便许多.  相似文献   

11.
The Non-uniform rational B-spline(NURBS)enhanced scaled boundary finite element method in combination with the modified precise integration method is proposed for the transient heat conduction problems in this paper.The scaled boundary finite element method is a semi-analytical technique,which weakens the governing differential equations along the circumferential direction and solves those analytically in the radial direction.In this method,only the boundary is discretized in the finite element sense leading to a reduction of the spatial dimension by one with no fundamental solution required.Nevertheless,in case of the complex geometry,a huge number of elements are generally required to properly approximate the exact shape of the domain and distorted meshes are often unavoidable in the conventional finite element approach,which leads to huge computational efforts and loss of accuracy.NURBS are the most popular mathematical tool in CAD industry due to its flexibility to fit any free-form shape.In the proposed methodology,the arbitrary curved boundary of problem domain is exactly represented with NURBS basis functions,while the straight part of the boundary is discretized by the conventional Lagrange shape functions.Both the concepts of isogeometric analysis and scaled boundary finite element method are combined to form the governing equations of transient heat conduction analysis and the solution is obtained using the modified precise integration method.The stiffness matrix is obtained from a standard quadratic eigenvalue problem and the mass matrix is determined from the low-frequency expansion.Finally the governing equations become a system of first-order ordinary differential equations and the time domain response is solved numerically by the modified precise integration method.The accuracy and stability of the proposed method to deal with the transient heat conduction problems are demonstrated by numerical examples.  相似文献   

12.
实际工程问题中通常存在大量的不确定参数, 区间有限元方法是一种结合有限元数值计算工具对结构进行不确定性分析的区间方法. 区间有限元的目的是获得在含有区间不确定性参数条件下的结构响应上下边界, 其关键问题在于区间平衡方程组的求解, 而这属于一类往往很难求解的NP-hard问题. 本文归纳了一类工程实际中常见的结构不确定性问题, 即可线性分解式区间有限元问题, 并针对此提出一种基于Neumann级数的区间有限元方法. 在区间有限元分析中, 当区间不确定参数表示为一组独立区间变量线性叠加时, 若结构的刚度矩阵也可表示为这些独立区间变量的线性叠加形式, 则称此类区间有限元问题为可线性分解式区间有限元问题. 对于此类问题, 采用Neumann级数对其刚度矩阵的逆矩阵进行表示, 可获得结构响应关于区间变量的显式表达式, 从而可高效求解结构响应的上下边界. 最后通过两个算例验证了本文所提方法的有效性.  相似文献   

13.
伍鹏革  倪冰雨  姜潮 《力学学报》2020,52(5):1431-1442
实际工程问题中通常存在大量的不确定参数, 区间有限元方法是一种结合有限元数值计算工具对结构进行不确定性分析的区间方法. 区间有限元的目的是获得在含有区间不确定性参数条件下的结构响应上下边界, 其关键问题在于区间平衡方程组的求解, 而这属于一类往往很难求解的NP-hard问题. 本文归纳了一类工程实际中常见的结构不确定性问题, 即可线性分解式区间有限元问题, 并针对此提出一种基于Neumann级数的区间有限元方法. 在区间有限元分析中, 当区间不确定参数表示为一组独立区间变量线性叠加时, 若结构的刚度矩阵也可表示为这些独立区间变量的线性叠加形式, 则称此类区间有限元问题为可线性分解式区间有限元问题. 对于此类问题, 采用Neumann级数对其刚度矩阵的逆矩阵进行表示, 可获得结构响应关于区间变量的显式表达式, 从而可高效求解结构响应的上下边界. 最后通过两个算例验证了本文所提方法的有效性.   相似文献   

14.
Standard preconditioners such as incomplete LU decomposition perform well when used with conjugate gradient-like iterative solvers such as GMRES for the solution of elliptic problems. However, efficient computation of convection-dominated problems requires, in general, the use of preconditioners tuned to the particular class of fluid-flow problems at hand. This paper presents three such preconditioners. The first is applied to the finite element computation of inviscid (Euler equations) transonic and supersonic flows with shocks and uses incomplete LU decomposition applied to a matrix with extra artificial dissipation. The second preconditioner is applied to the finite difference computation of unsteady incompressible viscous flow; it uses incomplete LU decomposition applied to a matrix to which a pseudo-compressible term has been added. The third method and application are similar to the second, only the LU decomposition is replaced by Beam-warming approximate factorization. In all cases, the results are in very good agreement with other published results and the new algorithms are found to be competitive with others; it is anticipated that the efficiency and robustness of conjugate-gradient-like methods will render them the method of choice as the difficulty of the problems that they are applied to is increased.  相似文献   

15.
ELEMENT-BY-ELEMENTMATRIXDECOMPOSITIONANDSTEP-BY-STEPINTEGRATIONMETHODFORTRANSIENTDYNAMICPROBLEMSWangHuaizhong(王怀忠)(ReceivedJu...  相似文献   

16.
There are some common difficulties encountered in elastic-plastic impact codes such as EPIC[1,2], NONSAP[3] etc. Most of these codes use the simple linear functions usually taken from static problems to represent the displacement components. In such finite element formulation, the strain and stress components are constants in every element. In the equations of motion, the stress components in general appear in the form of their space derivatives. Thus, if we use such form functions to represent the displacement components, the effect of internal stresses to the equations of motion vanishes identically. The usual practice to overcome such difficulties is to establish as self-equilibrium system of internal forces acting on various nodal points by means of transforming equations of motion into variational form of energy relation through the application of virtual displacement principle. The nodal acceleration is then calculated from the total force acting on this node from all the neighbouring elements. The transformation of virtual displacement principle into the variational energy form is performed on the bases of continuity conditions of stress and displacement throughout the integrated space. That is to say, on the interface boundary of finite element, the assumed displacement and stress functions should be conformed. However, it is easily seen that, for linear form function of finite element calculation, the displacement continues everywhere, but not the stress components. Thus, the convergence of such kind of finite element computation is open to question. This kind of treatment has never been justified even in approximation sense. Furthermore, the calculation of nodal points needs a rule to calculate the mass matrix. There are two ways to establish mass matrix, namely lumped mass method and consistent mass method [4]. The consistent mass matrix can be obtained naturally through finite element formulation, which is consistent to the assumed form functions. However, the resulting consistent mass matrix is not in diagonalized form, which is inconvenient for numerical computation. For most codes, the lumped mass matrix is used, and in this case, the element mass is distributed in certain assumed proportions to all the nodal points of this element. The lumped mass matrix is diagonalized with diagonal terms composed of the nodal mass. However, the lumped mass assumption has never been justified. All these difficulties are originated from the simple linear form functions usually used in static problems.In this paper, we introduce a new quadratic form function for elastic-plastic impact problems. This quadratic form function possesses diagonalized consistent mass matrix, and non-vanishing effect of internal stress to the equations of motion. Thus with this kind of dynamic finite element, all above-said difficulties can be eliminated.  相似文献   

17.
本文探讨用自适应网格加密技术结合多重网格法求解由有限元离散导致的病态方程。计算结果表明;自适应多重网格有限元法是求解严重病态方程珠有效方法。  相似文献   

18.
This paper presents a numerical simulation for application of the Kalman filter finite element method. The Kalman filter is employed frequently for the solution of time series analysis including observation and system noises. Applying the Kalman filter to the finite element method, the present method is capable of the estimation in time and space directions. In this method, the matrix generated by the finite element method is applied to the state transition matrix. Using the Kalman filter finite element method, the characteristics of both the Kalman filter and the finite element method can be strengthened. In this paper, the state transition matrix is based on the shallow water equations which are approximated by the finite element method. This method can estimate the tidal current not only in time but also in space directions.  相似文献   

19.
We first establish the rigorous field equations of the two continuous stages before and after entering water. Then correspondently, we obtain the specific variational principles, bounded theorems, and boundary integral equations of the second stage problems. The existence of solutions are proved and the scheme of solving the solutions are provided. Finally, as a numerical example, the ship's wave resistence problem is used to demonstrate the specific application of the second stage problems and its accuracy. Then we provide a rigorous and sound theoretical basis of variational finite element method and boundary element method for calculating the accurately fundamental equations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号