首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
An asymptotic analysis is presented for a dynamic problem of a semi-infinite isotropic thermoelastic solid with a small surface breaking crack. The exterior surface of the solid is subjected to a series of short thermal pulses. The crack surface is traction free and an ideal thermal contact is assumed across the crack. The stress intensity factor is asymptotically evaluated as a function of the crack depth and time. The effect of a boundary layer associated with the diffusive term is identified. The theoretical model is supplied with numerical simulations.  相似文献   

2.
An interface crack or delamination may often branch out of the interface in a laminated composite due to thermal stresses developing around the delamination/crack tip when the media is exposed to heat flow induced by environmental events such as a sudden short-duration fire. In this paper, the thermo-elastic problem of interface crack branching in dissimilar anisotropic bi-media is studied by using the theory of Stroh’s dislocation formalism, extended to thermo-elasticity in matrix notation. Based on the complex variable method and the analytical continuation principle, the thermo-elastic interface crack/delamination problem is examined and a general solution in compact form is derived for dissimilar anisotropic bi-media. A set of Green’s functions is proposed for the dislocations (conventional dislocation and thermal dislocation/heat vortex) in anisotropic bi-media. These functions may be more suitable than those which have appeared in the literature on addressing thermo-elastic interface crack branching in dissimilar anisotropic bi-materials. Using the contour integral method, a closed form solution to the interaction between the dislocations and the interface crack is obtained. Within the scope of linear fracture mechanics, the thermo-elastic problem of interface crack branching is then solved by modelling the branched portion as a continuous distribution of dislocations. The influence of thermal loading and thermal properties on the branching behavior is examined, and criteria for predicting interface crack branching are suggested, based on the extensive numerical results from the study of various cases.  相似文献   

3.
This paper investigates the fracture problem of a piezoelectric cylinder with a periodic array of embedded circular cracks. An electro-mechanical fracture mechanics model is established first. The model is further used to the thermal fracture analysis of a piezoelectric cylinder subjected to a sudden heating on its outer surface. The temperature field and the associated thermal stresses and electric displacements are obtained and are added to the crack surface to form a mixed-mode boundary value problem for the electro-mechanical coupling fracture. The stress and stress intensities are investigated for the effect of crack spacing. Strength evaluation of piezoelectric materials under the transient thermal environment is made and thermal shock resistance of the medium is given.  相似文献   

4.
The present work is concerned with a penny-shaped Dugdale crack embedded in an infinite space of one-dimensional(1D) hexagonal quasicrystals and subjected to two identical axisymmetric temperature loadings on the upper and lower crack surfaces. Applying Dugdale hypothesis to thermo-elastic results, the extent of the plastic zone at the crack tip is determined.The normal stress outside the plastic zone and crack surface displacement are derived in terms of special functions. For a uniform loading case, the corresponding results are presented by simplifying the preceding results. Numerical calculations are carried out to show the influence of some parameters.  相似文献   

5.
Thermal fields may exist in addition to mechanical loading, for example, due to short term exposure to fire. In this paper, the branching of cracks in the presence of combined thermal and mechanical loads is investigated for general anisotropic media by employing the theory of Stroh’s dislocation formalism, extended to thermo-elasticity in matrix notation. A general solution to the thermo-elastic crack problem for an anisotropic material under arbitrary loading is obtained in a compact form. Green’s functions are also presented for a thermal dislocation (heat vortex) and a conventional dislocation (or, referred as mechanical dislocation), which are formulated considering the cuts located at an arbitrary angle with respect to the x1 axis of the coordinate system (x1, x2, x3). Using the derived compact expressions, the interaction between the crack and the dislocation is studied and a closed form solution for this interaction is obtained. The branching portion of the thermo-elastic crack is modelled as a continuous distribution of dislocations. This problem is then converted into a set of singular integral equations. Numerical results are presented to illustrate the possible effects of thermal loading on the propagation of the branched crack.  相似文献   

6.
An elastic analysis of an internal central crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane was performed. A dynamic model of bridging fiber pull-out of composite materials was presented. Resultingly the fiber failure is governed by maximum tensile stress, the fiber breaks and hence the crack extension should occur in self-similar fashion. By the methods of complex functions, the problem studied can be transformed into the dynamic model to the Reimann-Hilbert mixed boundary value problem, and a straightforward and easy analytical solution is presented. Analytical study on the crack propagation subjected to a ladder load and an instantaneous pulse loading is obtained respectively for orthotropic anisotropic body. By utilizing the solution, the concrete solutions of this model are attained by ways of superposition.  相似文献   

7.
The surface temperature of stainless steel SS304 low cycle fatigue specimens subjected to cyclic loading was studied using infrared thermography technique. The thermal data mapped onto the various stages of cyclic stress-strain curve shows the ability of these measurements to identify the yield points in both the compression and tension loading. Based on the results of this study, it is possible to identify the state of stress for materials such as elastic tension, plastic tension, elastic compression, plastic compression during cyclic loading using infrared thermographic data. The thermo-elastic slope and thermo-plastic slope was observed to be dependent on the prior loading cycles.  相似文献   

8.
The transient thermal stress crack problem for two bonded dissimilar materials subjected to a convective cooling on the surface containing an edge crack perpendicular to the interface is considered. The problem is solved using the principle of superposition and the uncoupled quasi-static thermoelasticity. The crack problem is formulated by applying the transient thermal stresses obtained from the uncracked medium with opposite sign on the crack surfaces to be the only external loads. Fourier integral transform is used to solve the perturbation problem resulting in a singular integral equation of Cauchy type in which the derivative of the crack surface displacement is the unknown function. The numerical results of the stress intensity factors are calculated for both the edge crack and the crack terminating at the interface using two different composite materials and illustrated as a function of time, crack length, coefficient of heat transfer, and the thickness ratio.  相似文献   

9.
This paper develops a full three-dimensional finite element model in order to study the vibrational behavior of a beam with a non-propagating surface crack. In this model, the breathing crack behavior is simulated as a full frictional contact problem between the crack surfaces, while the region around the crack is discretized into three-dimensional solid finite elements. The governing equations of this non-linear dynamic problem are solved by employing an incremental iterative procedure. The extracted response is analyzed utilizing either Fourier or continuous wavelet transforms to reveal the breathing crack effects. This study is applied to a cracked cantilever beam subjected to dynamic loading. The crack has an either uniform or non-uniform depth across the beam cross-section. For both crack cases, the vertical, horizontal, and axial beam vibrations are studied for various values of crack depth and position. Coupling between these beam vibration components is observed. Conclusions are extracted for the influence of crack characteristics such as geometry, depth, and position on the coupling of these beam vibration components. The accuracy of the results is verified through comparisons with results available from the literature.  相似文献   

10.
The paper describes a two-dimensional computational model for simulating surface initiated crack growth in the lubricated contact area that leads to surface pitting of mechanical components. The model assumes size and orientation of the initial crack which is subjected to contact loading conditions, accounting for the elasto-hydrodynamic-lubrication effects and tangential loading due to sliding. The influence of a lubricating fluid, driven into the crack by hydraulic mechanism, is also considered. The minimum strain energy density criterion is used to analyze crack propagation with the aim of the finite element analysis. The model is applied to a real pitting problem of a gear. The results for pit sizes correlate well with those observed in experimental testing.  相似文献   

11.
To simulate buckling of nonuniform coatings, we consider the problem of an embedded crack in a graded orthotropic coating bonded to a homogeneous substrate subjected to a compressive loading. The coating is graded in the thickness direction and the material gradient is orthogonal to the crack direction which is parallel with the free surface. The elastic properties of the material are assumed to vary continuously along the thickness direction. The principal directions of orthotropy are parallel and perpendicular to the crack orientation. The loading consists of a uniform compressive strain applied away from the crack region. The graded coating is modeled as a nonhomogeneous medium with an orthotropic stress–strain law. Using a nonlinear continuum theory and a suitable perturbation technique, the plane strain problem is reduced to an eigenvalue problem describing the onset of buckling. Using integral transforms, the resulting plane elasticity equations are converted analytically into singular integral equations which are solved numerically to yield the critical buckling strain. The Finite Element Method was additionally used to model the crack problem. The main objective of the paper is to study the influence of material nonhomogeneity on the buckling resistance of the graded layer for various crack positions, coating thicknesses and different orthotropic FGMs.  相似文献   

12.
A half-space containing a surface-breaking crack of uniform depth is subjected to three-dimensional dynamic loading. The elastodynamic stress-analysis problem has been decomposed into two problems, which are symmetric and antisymmetric, respectively, relative to the plane of the crack. The formulation of each problem has been reduced to a system of singular integral equations of the first kind. The symmetric problem is governed by a single integral equation for the opening-mode dislocation density. A pair of coupled integral equations for the two sliding-mode dislocation densities govern the antisymmetric problem. The systems of integral equations are solved numerically. The stress-intensity factors are obtained directly from the dislocation densities. The formulation is valid for arbitrary 3-D loading of the half-space. As an example, an applied stress field corresponding to an incident Rayleigh surface wave has been considered. The dependence of the stress-intensity factors on the frequency, and on the angle of incidence, is displayed in a set of figures.  相似文献   

13.
The problem of a plane crack of arbibrary shape, subjected to arbitrary loading, is studied. The displacement field is represented by two elastic potentials, the single-layer and the double-layer potential of the second kind. The equations for the crack displacement discontinuities are derived. An approximate analysis of the crack opening displacement under pressure is discussed.  相似文献   

14.
In this paper, we consider the elasto-static problem of an embedded crack in a graded orthotropic coating bonded to a homogeneous substrate subject to statically applied normal and tangential surface loading. The crack direction is parallel to the free surface. The coating is graded in the thickness direction and is orthogonal to the crack direction. This coating is modelled as a non-homogeneous medium with an orthotropic stress–strain law. The equivalent crack surface stresses are first obtained and substituted in the plane elasticity equations. Using integral transforms, the governing equations are converted into singular integral equations which are solved numerically to yield the displacement field as well as the crack-tip stress intensity factors. This study presents a complete theoretical formulation for the problem in the static case. A numerical predictive capability for solving the singular integral equations and computing the crack-tip stress intensity factors is proposed. Since the loading is compressive, a previously developed crack-closure algorithm is applied to avoid interpenetration of the crack faces. The main objective of the paper is to investigate the effects of the material orthotropy and non-homogeneity of the graded coating on the crack-tip stress intensity factors, with and without using the crack-closure algorithm, for the purpose of gaining better understanding on the behavior and design of graded coatings.  相似文献   

15.
研究两半无限大黏弹性体间Griffith界面裂纹在简谐载荷作用下裂纹尖端动应力场的奇异特性.通过引入裂纹张开位移和裂纹位错密度函数,相应的混合边值问题归结为一组耦合的奇异积分方程.渐近分析表明裂尖动应力场的奇异特征完全包含在奇异积分方程的基本解中.通过对基本解的深入分析发现黏弹性材料界面裂纹裂尖动应力场具有与材料参数和外载荷频率相关的振荡奇异特性.以标准线性固体黏弹材料为例讨论了材料参数和载荷频率对奇性指数和振荡指数的影响.  相似文献   

16.
A nonuniform crack growth problem is considered for a homogeneous isotropic elastic medium subjected to the action of remote oscillatory and static loads. In the case of a plane problem, the former results in Rayleigh waves propagating toward the crack tip. For the antiplane problem the shear waves play a similar role. Under the considered conditions the crack cannot move uniformly, and if the static prestress is not sufficiently high, the crack moves interruptedly. For fracture modes I and II the established, crack speed periodic regimes are examined. For mode III a complete transient solution is derived with the periodic regime as an asymptote. Examples of the crack motion are presented. The crack speed time-period and the time-averaged crack speeds are found. The ratio of the fracture energy to the energy carried by the Rayleigh wave is derived. An issue concerning two equivalent forms of the general solution is discussed.  相似文献   

17.
The mode I extension of a half plane crack in a transversely isotropic solid under 3-D loading is analyzed. Firstly, the fundamental problem that the crack is subjected to a pair of unit point loads on its faces is considered. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener–Hopf technique. The Cagniard–de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Based on the fundamental solution, the stress intensity factor history due to general loading is then obtained. Some features of the solutions are discussed through numerical results.  相似文献   

18.
An interfacial crack with electrically permeable surfaces between two dissimilar piezoelectric ceramics under electromechanical loading is investigated. An exact expression for singular stress and electric fields near the tip of a permeable crack between two dissimilar anisotropic piezoelectric media are obtained. The interfacial crack-tip fields are shown to consist of both an inverse square root singularity and a pair of oscillatory singularities. It is found that the singular fields near the permeable interfacial crack tip are uniquely characterized by the real valued stress intensity factors proposed in this paper. The energy release rate is obtained in terms of the stress intensity factors. The exact solution of stress and electric fields for a finite interfacial crack problem is also derived.  相似文献   

19.
The plane elastic problem of circular-arc rigid line inclusions is considered. The model is subjected to remote general loads and concentrated force which is applied at an arbitrary point inside either the matrix or the circular inclusion. Based on complex variable method, the general solutions of the problem were derived. The closed form expressions of the sectionally holomorphic complex potentials and the stress fields were derived for the case of the interface with a single rigid line. The exact expressions of the singular stress fields at the rigid line tips were calculated which show that they possess a pronounced oscillatory character similar to that for the corresponding crack problem under plane loads. The influence of the rigid line geometry, loading conditions and material mismatch on the stress singularity coefficients is evaluated and discussed for the case of remote uniform load.  相似文献   

20.
We present an asymptotic algorithm for analysis of a singularly perturbed problem in a domain containing an interfacial crack. The crack is assumed to be flat and its front, initially straight, is perturbed in the plane containing the crack. The aim of the work is to determine the asymptotic representation of the stress-intensity factors near the edge of the crack. Mathematically, the limit problem is reduced to the analysis of a matrix, 3×3, Wiener-Hopf problem, and its solution generates the “weight matrix-function” characterised by a special singular solution near the crack edge. The two-term asymptotic representation for the weight function components is required by the asymptotic algorithm, together with two-term asymptotics for stress components associated with the physical fields near the edge of the crack. The particular feature of the solution is the coupling between the normal opening mode (Mode-I), and the shear modes (Mode-II and Mode-III), and the oscillatory behaviour of certain stress components near the crack edge. Explicit asymptotic formulae for the stress-intensity factors are obtained at the edge of a “wavy crack” at an interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号