首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The porous media model has been successfully applied to numerical simulation of current and wave interaction with traditional permeable coastal structures such as breakwaters. Recently this model was employed to simulate flow through and around fishing net structures, where the unknown porous resistance coefficients were adjusted by fitting the available experimental data. In the present paper, a new approach was proposed to calculate the porous resistance coefficients based on the transformation of Morison type load model. The transformation follows the principle that the total forces acting on a net panel from Morison type load model should be equal to the forces obtained from the porous media model. In order to account for the interaction effects in-between the twines, two coefficients were introduced, and they were calibrated by minimizing the least square error function. Extensive validation cases were carried out to examine the performance of the numerical model. This includes steady current flow through plane net panels and circular fish cages, and wave interaction with plane net panels. A variety of fishing nets with different solidity ratios were used in the validation cases, from which it was seen that the overall agreement between the numerical and experimental results is fair.  相似文献   

2.
Hydrodynamic loads acting on a fish farm may be affected by the growth of different biofouling organisms, mainly due to increased solidity of the nets. In this paper, the hydrodynamic loads acting on high solidity net cage models subjected to high uniform flow velocities and the corresponding deformation of the net cages are studied. Model tests of net cylinders with various solidities were performed in a flume tank with a simulated current. Standard Morison-type numerical analyses were performed based on the model tests, and their capability of simulating the occurring loads and the observed net cage deformations for different flow velocities was evaluated.Large deformations of the net cage models were observed, and at high velocities the deformations were close to what is physically possible. Net cage deformation appeared to be less dependent on solidity than on flow velocity and weights. Drag forces increased with increasing flow velocity and were dependent on both bottom weights and netting solidity. For the lowest solidity net, drag forces were close to proportional to flow velocity. For the three high solidity nets, the measured drag forces were of similar magnitude, and drag increased less with increasing flow velocity above approximately 0.5 m/s than at lower velocities.This study shows that a basic reduced velocity model is not sufficient to model the interaction between the fluid flow and net (hydroelasticity) for high solidity net cages subjected to high flow velocities.The standard numerical analysis was in general able to make good predictions of the net shape, and was capable of making an acceptable estimate of hydrodynamic loads acting on the lowest solidity net model (Sn=0.19). For high solidities and large deformations, numerical tools should account for changes in water flow and the global drag coefficient of the net.  相似文献   

3.
气泡与弹性边界的相互作用研究   总被引:1,自引:0,他引:1  
从气泡与弹性边界相互作用基本现象入手, 基于势流理论, 建立气泡与弹性边界相互作用的数值模型, 计及浮力与表面张力, 模拟弹性介质附近单个气泡的动态特性, 通过气泡周围压力场的分布来讨论蘑菇状气泡的成因, 数值结果与已有实验结果吻合良好. 讨论两个气泡与弹性边界的相互作用, 并通过与Robinson 和Blake的实验结果对比, 验证数值模型的正确性. 数值模拟发现, 浮力、弹性系数和密度比是影响气泡动态特性的重要特征参数.   相似文献   

4.
In this paper we propose and discuss a numerical method to model the current loads on a net cage. In our numerical model, the fluid–structure interaction is taken into consideration. The net cage is modeled on the mass-spring model; the flow field is modeled by the finite volume method (FVM). A novel hybrid volume approach is used to add the resistance force of the net cage into the flow field for coupling the fluid and net. The net resistance to the flow is calculated directly by the net’s current load using Newton’s Third Law. The resistance force is discretized in the hybrid volume and represented in the source term of the Navier–Stokes equation. By using the hybrid volume method, the mesh grid is separated from the net shape, and sparse grid (0.1 m) can be used to calculate the flow field for computational efficiency. Based on the detailed flow field, we can predict the net’s current load more accurately. The final results are derived by the segregated iterative calculation of net shape and flow field. Current forces acting on both rigid and flexible net cages are simulated at water velocity from 0 to 1 m/s; the simulation results of proposed numerical method are compared with the existing experiments, good agreements are shown in both flow field and current force, the mean normalized absolute error of the current force between simulations and measurements is about 5%.  相似文献   

5.
针对不同气体模型对高超声速飞行器喷流反作用控制系统(RCS)热喷干扰流场模拟的计算效率和准确性问题, 基于喷流燃气物理化学模型, 通过数值求解含化学反应源项的三维N-S方程, 建立了飞行器RCS热喷干扰流场数值模拟方法, 分别采用化学反应流、反应冻结流、二元异质流以及空气喷流四种气体模型开展了典型外形热喷干扰流场的数值模拟, 研究了不同气体模型对热喷干扰流场结构、飞行器气动力热特性的影响, 分析了不同马赫数、飞行高度下的变化规律. 研究表明: 化学反应流模型计算精度较高, 计算与风洞试验数据的吻合程度优于其他三种简化模型; 在本文的低空条件下, 采用简化模型进行热喷干扰流场数值模拟, 会低估分离区大小, 使飞行器气动力特性预测出现偏差, 同时也会低估表面热环境, 对防热系统设计不利, 随着马赫数增加, 简化模型对气动力热特性预估的误差进一步增大, 同时不同简化模型之间的差异也进一步增大; 飞行高度较高时, 模型之间的差异减小, 此时可采用简化模型进行计算以提高计算效率. 本文的研究结果可为飞行器热喷干扰流场数值模拟及喷流反作用控制系统设计提供参考.   相似文献   

6.
In order to study cross flow induced vibration of heat exchanger tube bundles, a new fluid–structure interaction model based on surface vorticity method is proposed. With this model, the vibration of a flexible cylinder is simulated at Re=2.67 × 104, the computational results of the cylinder response, the fluid force, the vibration frequency, and the vorticity map are presented. The numerical results reproduce the amplitude‐limiting and non‐linear (lock‐in) characteristics of flow‐induced vibration. The maximum vibration amplitude as well as its corresponding lock‐in frequency is in good agreement with experimental results. The amplitude of vibration can be as high as 0.88D for the case investigated. As vibration amplitude increases, the amplitude of the lift force also increases. With enhancement of vibration amplitude, the vortex pattern in the near wake changes significantly. This fluid–structure interaction model is further applied to simulate flow‐induced vibration of two tandem cylinders and two side‐by‐side cylinders at similar Reynolds number. Promising and reasonable results and predictions are obtained. It is hopeful that with this relatively simple and computer time saving method, flow induced vibration of a large number of flexible tube bundles can be successfully simulated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
沈祺  王国砚  顾明 《力学季刊》2007,28(4):661-666
针对上海市某商业街区建立了简化物理模型,采用离散化的数值模拟方法对该街区风场进行三维模拟研究.首先采用CAARC标准模型进行可行性验证,探讨了流体力学数值模拟的适用性和精确度.然后对该街区风场及建筑物的风场进行了数值模拟,分析了由于狭长T字型建筑布局而引起的巷道风效应.最后,讨论了街区群楼间间距及建筑布局等因素的改变对风场和风荷载的影响.研究结果表明,商业街区规划时应避免巷道风效应,并建议将行人高度风环境纳入考虑的范畴.  相似文献   

8.
佟莹  夏健  陈龙  薛浩天 《力学学报》2022,54(1):94-105
采用浸没边界格子Boltzmann(immersed boundary-lattice Boltzmann,IB-LB)模型执行动边界绕流数值模拟时,信息交互界面和边界力计算格式直接影响流动求解器的数值精度和计算效率.基于隐式扩散界面,一种改进的直接力格式IB-LB模型被提出.边界力表达式基于欧拉/拉格朗日变量同一性准...  相似文献   

9.
In this paper, the wheel-soil interaction for a future lunar exploration mission is investigated by physical model tests and numerical simulations. Firstly, a series of physical model tests was conducted using the TJ-1 lunar soil simulant with various driving conditions, wheel configurations and ground void ratios. Then the corresponding numerical simulations were performed in a terrestrial environment using the Distinct Element Method (DEM) with a new contact model for lunar soil, where the rolling resistance and van der Waals force were implemented. In addition, DEM simulations in an extraterrestrial (lunar) environment were performed. The results indicate that tractive efficiency does not depend on wheel rotational velocity, but decreases with increasing extra vertical load on the wheel and ground void ratio. Rover performance improves when wheels are equipped with lugs. The DEM simulations in terrestrial environment can qualitatively reproduce the soil deformation pattern as observed in the physical model tests. The variations of traction efficiency against the driving condition, wheel configuration and ground void ratio attained in the DEM simulations match the experimental observations qualitatively. Moreover, the wheel track is found to be less evident and the tractive efficiency is higher in the extraterrestrial environment compared to the performance on Earth.  相似文献   

10.
Both visual experiments and numerical analyses were conducted to investigate the interaction between bubble jet flows during pool boiling of subcooled water on horizontal thin wires. The bubble jet flows nearby attracted each other, and they can combine into one jet flow under strong interaction. As the adjacent bubble departs, the bubble jet flow would experience an unsteady evolution process with the jet flow interaction weakening. Since the unsymmetrical thermocapillary force at the bubble interface was induced by the adjacent bubble as a cold source, the bubble jet flow would trend to the adjacent bubble, and the mechanism based on thermocapillary force and cold source can explain the bubble jet flow interaction very well. The steady bubble jet flow interaction phenomena were further simulated by laminar model, and the calculated jet flow interaction phenomena were in a good agreement with the experimental results.  相似文献   

11.
The present work is concerned with the numerical calculation of the turbulent flow field around the stern of ship models. The finite volume approximation is employed to solve the Reynolds equations in the physical domain using a body-fitted, locally orthogonal curvilinear co-ordinate system. The Reynolds stresses are modelled according to the standard k-ε turbulence model. Various numerical schemes (i.e. hybrid, skew upwind and central differencing) are examined and grid dependence tests have been performed to compare calculated with experimental results. Moreover, a direct solution of the momentum equations within the near-wall region is tried to avoid the disadvantages of the wall function approach. Comparisons between calculations and measurements are made for two ship models, i.e. the SSPA and HSVA model.  相似文献   

12.
翼吊式双发民机机体/动力装置一体化数值分析   总被引:1,自引:0,他引:1  
李杰  鄂秦  李凤蔚 《力学学报》2000,32(2):233-238
介绍了多块网格技术与流场分区求解方法在翼吊式双发民机机体/动力装置一体化研究中的应用。数值求解Euler方程模拟复杂组合体绕流。采用边界层方程/Euler方程耦合迭代技术进行翼面粘性修正。为保持Euler注解中计算网格固定,粘流/无粘流耦合迭采用表面源模型。该方法对某民用飞机模型跨音速绕流流场进行了数值模拟,机翼表面计算压力分布与实验吻合良好。  相似文献   

13.
内嵌流体自适应减振方法(IVFUM)中流体运动数值模拟   总被引:1,自引:0,他引:1  
针对内嵌流体自适应减振方法(IVFUM)和所完成的内嵌流体Euler梁(BIFS)稳态减振试验,进行了对应的流体动力学数值分析。在BIFS定频简谐激励下,根据振动梁模态分析和稳态响应理论,将本意上的流固耦合模型,通过构建流体活动边界,近似简化为半充液腔的纯流体动力学问题。梁在一阶与二阶主振动下FLUENT数值计算所得流腔中的自由液面形状与试验结果基本一致;计算流体自由表面形状、速度场和压力场性态较好地揭示了腔内流体运动的规律和流体-柔性梁力学互动特征,定性和半定量地说明了内嵌式粘性流体单元(IVFU)对柔性梁减振的内在机理和有效性。  相似文献   

14.
含化学反应膛口流场的无网格数值模拟   总被引:2,自引:0,他引:2  
吴伟  许厚谦  王亮  薛锐 《爆炸与冲击》2015,35(5):625-632
基于无网格方法,对包含大位移运动边界和非平衡化学反应的膛口流场进行了数值模拟。所发展算法是基于线性基函数最小二乘显式无网格方法,忽略黏性及湍流的影响,对流场采用ALE(arbitrary Lagrangian-Eulerian)形式的Euler方程描述,对流通量和化学反应源项采用多组分HLLC(Harten-Lax-van Leer-Contact)格式和有限速率反应模型计算,对于运动边界造成的点云畸形采用局部点云重构方法处理,重构过程中采用虚拟边阵面推进。对圆柱绕流和激波诱导燃烧流场进行了数值模拟,验证了重构方法和化学反应计算的有效性。最后对12.7 mm口径机枪膛口流场进行了模拟,结果同实验照片、非结构网格方法结果吻合较好,数值结果清晰地再现了膛口初始冲击波、膛口冲击波、欠膨胀射流波系结构的动力学发展过程,以及膛口焰的时间、空间分布特征。  相似文献   

15.
刘曜  刘志柱 《力学与实践》2006,28(4):20-22,19
利用Pro/E软件对水下航行体进行了实体建模.使用Fluent 6.0软件,应用三维黏性定常不可压缩Navier-Stokes方程,k-ε两方程湍流模型,采用有限体积法对水下航行体尾翼展开过程中的流场和载荷进行了数值仿真计算,根据所得结果对水下航行体的展开规律进行了分析计算.对照实验结果,说明了该数值解法的正确性,同时表明了数值分析结果对解决工程问题具有实际指导意义,可应用于水下航行体折叠尾翼的设计和改进.  相似文献   

16.
17.
对游动或飞行生物自主运动特性的深入研究,可促进仿生学的进一步发展。本文以"C"型游动鱼作为研究对象,建立了自主游动的柔性鱼模型。此模型较为真实地反映了鱼自主游动时鱼体内力(由鱼体肌肉收缩提供)、鱼体运动和外界流体之间的耦合作用。基于传统的反馈力方法和混合有限元浸入边界法对鱼的自主游动进行了数值模拟。分析了鱼自主游动启动阶段和巡游阶段流场特性及鱼体运动特征。模拟结果表明,受到鱼体自身组织结构和外界流场作用,鱼游动时通过呈"C"型和类"S"型的不断转换,以获取能量,实现鱼体自主游动。  相似文献   

18.
The turbulent flows around four cylinders in an in-line square configuration with different spacing ratios of 1.5, 2.5, 3.5 and 5.0 have been investigated experimentally at subcritical Reynolds numbers from 11,000 to 20,000. The mean and fluctuating velocity distributions were obtained using the laser Doppler anemometry (LDA) measurement. The digital particle image velocimetry (DPIV) was employed to characterize the full field vorticity and velocity distributions as well as other turbulent quantities. The experimental study indicated that several distinct flow patterns exist depending on the spacing ratio and subcritical Reynolds number for turbulent flow. The three-dimensional numerical simulations were also carried out using the large eddy simulation (LES) at Reynolds number of 15,000 with the spacing ratio of 1.5 and 3.5. The results show that the LES numerical predictions are in good agreement with the experimental measurements. Therefore, the three-dimensional vortex structures and the full field instantaneous and mean quantities of the flow field such as velocity field, vorticity field, etc., which are very difficult to obtain experimentally, can be extracted from the simulation results for the deepening of our understanding on the complex flow phenomena around four cylinders in in-line configuration.  相似文献   

19.
ON THE PARTIALLY CAVITATING FLOW AROUND TWO-DIMENSIONAL HYDROFOILS   总被引:1,自引:0,他引:1  
The steady partially cavitating flow around two-dimensional hydrofoils was simulated numerically by the low-order potential-based boundary integration method. The cavity shape and length are determined for given cavitating numbers in the course of iteration by satisfying the kinematic and dynamic boundary conditions. The re-entrant jet model and the pressure-recovery close model are adopted to replace the high turbulent and two-phase wake forming behind the cavity. The results are compared with the other published numerical ones.  相似文献   

20.
An improved progressive preconditioning method for analyzing steady inviscid and laminar flows around fully wetted and sheet‐cavitating hydrofoils is presented. The preconditioning matrix is adapted automatically from the pressure and/or velocity flow‐field by a power‐law relation. The cavitating calculations are based on a single fluid approach. In this approach, the liquid/vapour mixture is treated as a homogeneous fluid whose density is controlled by a barotropic state law. This physical model is integrated with a numerical resolution derived from the cell‐centered Jameson's finite volume algorithm. The stabilization is achieved via the second‐and fourth‐order artificial dissipation scheme. Explicit four‐step Runge–Kutta time integration is applied to achieve the steady‐state condition. Results presented in the paper focus on the pressure distribution on hydrofoils wall, velocity profiles, lift and drag forces, length of sheet cavitation, and effect of the power‐law preconditioning method on convergence speed. The results show satisfactory agreement with numerical and experimental works of others. The scheme has a progressive effect on the convergence speed. The results indicate that using the power‐law preconditioner improves the convergence rate, significantly. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号