首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
王海波  沈蒲生 《力学季刊》2006,27(1):124-129
在平截面假定的前提下,将钢筋混凝土L形柱划分为两端弹塑性区、中间为弹性区的三分段杆单元模型。将应用于平面剪力墙的多垂直杆单元模型拓展为空间的多垂直杆单元模型,推导了拓展的多垂直杆单元模型单元刚度矩阵,经静力凝聚为三分段杆单元模型刚度矩阵,该单元模型可用于各种截面形式的钢筋混凝土异形柱、剪力墙墙肢和梁的非线性分析,计算工作量较小。讨论了目前垂直杆的轴向拉压滞回模型,提出了轴向拉压滞回曲线考虑骨架曲线下降段的简化处理方法。最后提供了算例,结果表明本文方法计算的滞回轴线与在反复加载下L形柱的试验结果吻合较好。  相似文献   

2.
纤维杆元模型在框架结构非线性分析中的应用   总被引:4,自引:0,他引:4  
本文基于Fiber模型,结合分段变刚度概念,推导建立了便于框架结构非线性分析应用的纤维杆元模型,即由杆件两端弹塑性区的纤维子单元及杆件中部弹性区的弹性子单元组成。弹塑性区由于受力较大,采用精细的纤维子单元模拟,中间弹性区受力相对较小,直接采用弹性子单元代替;同时,应用增分理论,分别推导了三维纤维子单元及弹性子单元的单刚矩阵,并采用静力凝聚方法,集成了三维纤维杆元模型的刚度矩阵。另外,直接应用混凝土及钢筋的本构关系,利用该计算模型对一栋12层框架结构进行了时程非线性分析,计算结果与振动台试验结果进行了比较,比较结果表明两者在结构动力特性,位移响应方面等均吻合较好,验证了该模型的有效性,可为推广使用提供参考。  相似文献   

3.
This paper considers the problem of one dimensional wave propagation in nonlinear, hysteretic media. The constitutive law in the media is prescribed by an integral relationship based on the Duhem model of hysteresis. It is found that the well known nonlinear elastic stress–strain relationship is a special case of this integral relationship. It is also shown that the stress–strain relationship from the McCall and Guyer model of hyesteretic materials can also be derived from this integral stress–strain relationship. The first part of this paper focuses on a material with a quadratic stress–strain relationship, where the initial value problem is formulated into a system of conservation laws. Analytical solutions to the Riemann problem are obtained by solving the corresponding eigenvalue problem and serve as reference for the verification and illustration of the accuracy obtained using the applied numerical scheme proposed by Kurganov and Tadmor. The second part of this research is devoted to wave propagation in hysteretic media. Several types of initial excitations are presented in order to determine special characteristics of the wave propagation due to material nonlinearity and hysteresis. The results of this paper demonstrate the accuracy and the robustness of this numerical scheme to analyze wave propagation in nonlinear materials.  相似文献   

4.
5.
This paper presents a design sensitivity analysis method by the consistent tangent operator concept-based boundary element implicit algorithm. The design variables for sensitivity analysis include geometry parameters, elastic–viscoplastic material parameters and boundary condition parameters. Based on small strain theory, Perzyna’s elastic–viscoplastic material constitutive relation with a mixed hardening model and two flow functions is considered in the sensitivity analysis. The related elastic–viscoplastic radial return algorithm and the formula of elastic–viscoplastic consistent tangent operator are derived and discussed. Based on the direct differentiation approach, the incremental boundary integral equations and related algorithms for both geometric and elastic–viscoplastic sensitivity analysis are developed. A 2D boundary element program for geometry sensitivity, elastic–viscoplastic material constant sensitivity and boundary condition sensitivity has been developed. Comparison and discussion with the results of this paper, analytical solution and finite element code ANSYS for four plane strain numerical examples are presented finally.  相似文献   

6.
In this work, a new and simple numerical approach to simulate nonlinear wave propagation in purely hysteretic elastic solids is presented. Conversely to classical time discretization method, which fully integrates the nonlinear equation of motion, this method utilizes a first-order approximation of the nonlinear strain in order to separate linear and nonlinear contributions. The problem for the nonlinear displacements is then posed as a linear one in which the solid is enforced with nonlinear forces derived from the linear strain. In this manner, a frequency analysis can be easily conducted, leading directly to a well-known frequency spectrum for the nonlinear strain. A mesoscale approach known as Preisach–Mayergoyz space (PM space) is used for the chacterization of the nonlinear elastic region of the solid. A meshless element free Galerkin method is implemented for the discretized equations of motion. Nevertheless, a mesh-based method can be still used as well without loss of generality. Results are presented for bidimensional isotropic plates both in plane stress and in plane strain subjected to harmonic monotone excitation.  相似文献   

7.
Formulation of a stress–strain relationship is presented for a granular medium, which is modeled as a first-order strain-gradient continuum. The elastic constants used in the stress–strain relationship are derived as an explicit function of inter-particle stiffness, particle size, and packing density. It can be demonstrated that couple-stress continuum is a subclass of strain-gradient continua. The derived stress–strain relationship is simplified to obtain the expressions of elastic constants for a couple-stress continuum. The derived stress–strain relationship is compared with that of existing theories on strain- gradient models. The effects of inter-particle stiffness and particle size on material constants are discussed.  相似文献   

8.
加筋材料的格形模型和统计数值方法   总被引:6,自引:0,他引:6  
本文采用格形化方法和统计技术建立加筋复合材料有限元力学模型,使用自动选取载荷步长方法和非平衡迭代技术,对加筋复合材料的宏观等效模量和破坏全过程进行了数值模拟,分析了材料分布的非均匀程度,相对体积比和横截面加筋分布方式对加筋复合材料整体宏观等效模量和承载力的影响。  相似文献   

9.
A cracked element is formulated using the two-filed Hellinger–Reissner functional. Due to utilization of the linear elastic fracture mechanics, only geometrical nonlinearities can be considered for the cracked element. A clear step-by-step algorithm for the element state determination is also presented. The element flexibility matrix is derived in a basic coordinate system. Co-rotational approach is used to transform the element stiffness matrix and the resisting force vector from the basic system to the global one. The suggested element is applicable for static and dynamic analysis, as well as, the stress intensity factor calculation, and also inverse crack detection. Various numerical problems verify accuracy of the proposed element for linear and nonlinear structural analysis.  相似文献   

10.
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.  相似文献   

11.
滞后细观模型在岩石力学中的应用   总被引:4,自引:0,他引:4  
对以砂岩为代表的所谓``NME材料'的力学行为研究方面的一些新的概念和模型进行了评介.首先介绍了一种基于所谓``滞后单元'的描述滞后现象的物理模型------Preisach-Mayergoyz(P-M)模型,然后详细阐述了P-M模型应用于模拟岩石的非线性滞后应力应变关系的过程和结果.这种唯象模型很好地描述了宏观上的滞后表现和``离散记忆'效应.接着本文对应变能耗散的力学机制进行了简单分析. 最后,介绍了一种描述弹性波在``NME材料'中传播规律的数学方法, 该方法从一般的弹性波传播规律出发,分析了``NME材料'特殊的力学性质给弹性波传播带来的影响,揭示了产生特殊的弹性波传播规律的原因.   相似文献   

12.
薄壁杆系结构的梁元分析模型   总被引:1,自引:0,他引:1  
本文导出了用于薄壁杆系结构弹性分析的薄壁梁元分析模型,在空间梁元分析模型^[3]的基础上,采用了一种改进的位移模式,考察了薄壁杆件可能发生的拉压,剪切,弯曲,扭转和翘曲等各变形形式以及它们的耦合效应,得出了相应的单元形函数,同时从工程应变的定义出发,采用Taylor级数展开的方法,建立了单元的五阶近似正交变表达式,并建立了相应的薄壁单元刚度方程,从而得出了局部坐标系下单元刚度矩阵的显式,根据本文所导出的薄壁梁元分析模型,编制了相应的结构计算程序,通过算例验证了本文所推导的单元刚度矩阵,同时通过与传统空间梁元计算模型计算结果的比较,阐述了截面翘曲对薄壁杆系结构的影响。  相似文献   

13.
光滑函数法求解拉压不同弹性模量问题   总被引:8,自引:1,他引:8  
采用光滑函数技术,对拉压不同弹性模量问题的应力应变关系进行光滑处理,可避免迭代中应力状态的判断,方便计算。同时建立了相应的基于初应力技术的有限元计算模式,仅需对刚度阵三角化一次,避免了考虑剪切刚度带来的不便。文中通过不同算例,对所提算法进行了数值验证,与解析解相比有很好符合。此外,对不同拉压模量的热应力分析进行了初步探讨。  相似文献   

14.
15.
For the coupled analysis of thin-walled composite beam under the initial axial force and on two-parameter elastic foundation with mono-symmetric I- and channel-sections, the stiffness matrices are derived. The stiffness matrices developed by this study are based on the homogeneous forms of simultaneous ordinary differential equations using the eigen-problem. For this, from the elastic strain energy, the potential energy due to the initial axial force and the strain energy considering the foundation effects, the equilibrium equations and force–displacement relationships are derived. The exact displacement functions for displacement parameters are evaluated by determining the eigenmodes corresponding to multiple non-zero and zero eigenvalues. Then the element stiffness matrix is determined using the force–displacement relationships. For the purpose of comparison, the finite element model based on the classical Hermitian interpolation polynomial is presented. In order to verify the accuracy and the superiority of the beam elements developed herein, the numerical solutions are presented and compared with results from the Hermitian beam elements and the ABAQUS’s shell elements. Particularly, the influence of the initial compressive and tensile forces, the fiber orientation, and the boundary conditions on the coupled behavior of composite beam with mono-symmetric I- and channel-sections is parametrically investigated.  相似文献   

16.
A biaxial hysteretic model is developed to take into account the commonly observed hysteretic characteristics of strength and stiffness degradation, pinching and biaxial interaction. The concept of zero force point is proposed to develop the biaxial hysteretic model. Two non-linear inelastic springs and one linear elastic spring are connected in parallel to define the cyclic behavior of the proposed biaxial hysteretic model. The proposed biaxial hysteretic model is rate-independent and capable of simulating not only global (such as story shear force versus story drift response of the whole structure) but also the local hysteretic behavior of structural member (such as moment versus curvature or plastic rotation response of a structural element). The biaxial cyclic loading test data of six reinforced concrete columns, which are designed for flexural failure and shear failure, are used to validate the proposed biaxial hysteretic model.  相似文献   

17.
预应力混凝土平面杆系结构的有限元方法   总被引:2,自引:1,他引:1  
建立了基于有限元方法的考虑材料和几何非线性的任意截面预应力混凝土平面杆系结构的数值分析模型,可用于模拟预应力混凝土大跨度梁、单向偏压细长柱等的非线性全过程结构响应。引入修正的Rodriguez截面模型确定截面切线刚度,其中混凝土的贡献通过截面边界顶点定义的梯形单元来实现;在此基础上利用传统的平面非线性杆单元导出了标准有限元公式。通过两个算例验证了该模型的可靠性和适用性。  相似文献   

18.
The effects of the inelastic deformation of the matrix on the overall hysteretic behavior of a unidirectional titanium–nickel shape-memory alloy (TiNi-SMA) fiber composite and on the local pseudoelastic response of the embedded SMA fibers are studied under the isothermal loading and unloading condition. The multiaxial phase transformation of the SMA fibers is predicted using the phenomenological constitutive equations which can describe the two-step deformation due to the rhombohedral and martensitic transformations, and the inelastic behavior of the matrix material using the standard nonlinear viscoplastic model. The average behavior of the SMA composite is evaluated with the micromechanical method of cells. It is observed that the inelastic deformation of the matrix due to prior tension results in a compressive stress in the matrix after unloading of the SMA composite and this residual stress impedes the complete recovery of the pseudoelastic strain of the SMA fibers. This explains that a closed hysteresis behavior of the SMA composite is no longer observed in contrast with the case that an elastic behavior of matrix is assumed. The predicted local stress–strain behavior indicates that the cyclic response of matrix is crucial to the design of the hysteretic performance of the SMA composite under the repeated loading conditions.  相似文献   

19.
Based on the neo-classical elastic energy of liquid crystal elastomers, the opto-mechanical behavior is modeled by considering the effect of photoisomerization on the nematic-isotropic transition of liquid crystal phase. Linearized stress–strain relation is derived for infinitesimal deformations with a very unusual shear stress that does not vanish identically as in the case of the soft behavior but is proportional to the rotation of directors. In other words, the shear stress depends on both the shear strain and the skew symmetric part of the displacement gradient with the shear modulus induced by the effect of photoisomerization. Finite element implementation for plane stress problems is obtained through a self-defined material subroutine in ABAQUS FEA tool. Numerical simulations show that the light induced deformations of two dimensional specimens consist of contractions, expansions and bending in different directions. The stress distributions indicate that the driving force for the light induced bending is produced by the bending moment of the normal stress along the director, while the other stress components are much smaller for two dimensional beam shaped specimens. However, the shear stress of the soft LCE is generally nonzero under light illumination due to the inhomogeneity of the opto-mechanical effect. It can be concluded from the strain distributions that the transversal plane cross section could remain plane after deformation if the light intensity or the decay distance is not too small and the sample is in the deep nematic phase. However, the shear strain and in plane rotation are of the same order as the other strain components, and thus should not be neglected. This indicates that the classical simple bending assumptions such as the Euler–Bernoulli beam theory should not be directly applied to model the light induced bending of neo-classical liquid crystal elastomers due to the soft behavior of the materials.  相似文献   

20.
By using the complex variables function theory, a plane strain electro-elastic analysis was performed on a transversely isotropic piezoelectric material containing an elliptic elastic inclusion, which is subjected to a uniform stress field and a uniform electric displacement loads at infinity. Based on the present finite element results and some related theoretical solutions, an acceptable conjecture was found that the stress field is constant inside the elastic inclusion. The stress field solutions in the piezoelectric matrix and the elastic inclusion were obtained in the form of complex potentials based on the impermeable electric boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号