首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
超磁致伸缩材料在力磁耦合作用下具有复杂的迟滞响应。Preisach模型可有效描述物理过程中的滞后现象,它具有两个重要特性,即擦除特性和同余特性。擦除特性是指输入局部极大值擦除了加载过程中小于该值的所有极大值,或输入局部极小值擦除了加载过程中大于该值的所有极小值,同时,与这些历史极值相应的加载历史也被擦除,不再影响之后的输出。同余特性是指输入极大值与极小值相同的所有闭合曲线一致。本文通过实验系统地研究了超磁致伸缩材料在多轴力磁耦合场作用下的磁致伸缩曲线、磁滞回线和应力应变的迟滞行为,发现其在力磁耦合下的非线性滞后行为具有擦除特性和同余特性。这满足了Preisach模型描述滞后现象的两个基本要求,验证了利用Preisach模型描述超磁致伸缩材料迟滞行为的可行性,为超磁致伸缩材料的非线性理论和器件设计提供了依据。  相似文献   

2.
Understanding torsional responses of shape memory alloy (SMA) specimens under partial or fully transformed cases with internal loops is of particular importance as the entire response might not be always utilized and only a portion of the entire response (internal loop) might be of significance to designers. In this work, we present experimental results of large complex loading and unloading torsional cycles which were conducted on superelastic SMA wires, under isothermal conditions with the purpose of elucidating the torsional internal loop response during loading and unloading. Such data hereto has not been available in open literature. Utilizing this data, we model the torsional response of superelastic SMA wires subjected to various loading and unloading situations that can result in different extents of transformation.A thermodynamically consistent Preisach model (Rao and Srinivasa, 2013) captures such complex internal loops with a high degree of precision by modeling driving force for phase transformation vs. volume fraction of martensite relationships. This approach is different from capturing purely phenomenological stress–strain or stress–temperature Preisach models. The thermodynamic approach utilized here has broader predictive capability. The model predictions indicate good agreement with the internal loop structures even though only the outer loop information was used for model calibration. The addition of a single inner loop information for model calibration greatly improves the predictions.  相似文献   

3.
Motivated by the distribution of non-linear relaxation (DNLR) approach, a phenomenological model is proposed in order to describe the cyclic plasticity behavior of metals under proportional and non-proportional loading paths with strain-controlled conditions. Such a model is based on the generalization of the Gibbs's relationship outside the equilibrium of uniform system and the use of the fluctuation theory to analyze the material dissipation due to its internal reorganization. The non-linear cyclic stress–strain behavior of metals notably under complex loading is of particular interest in this study. Since the hardening effects are described appropriately and implicitly by the model, thus, a host of inelastic behavior of metals under uniaxial and multiaxial cyclic loading paths are successfully predicted such as, Bauschinger, strain memory effects as well as additional hardening. After calibrating the model parameters for two metallic materials, the model has demonstrated obviously its ability to describe the cyclic elastic-inelastic behavior of the nickel base alloy Waspaloy and the stainless steel 316L. The model is then implemented in a commercial finite element code simulating the cyclic stress–strain response of a thin-walled tube specimen. The numerical responses are in good agreement with experimental results.  相似文献   

4.
A well known foam for naval sandwiches is PVC (polyvinyl chloride) foam. This foam exhibits elasto-damage behavior under tension and elasto-plastic behavior under compression. A proper material model is required for the prediction of the failure and post-failure behavior of these sandwiches during (indirect) underwater explosion loading and blast loading. As material models available did not have combined elasto-plastic and elasto-damage behaviors, a new model needed to be developed. To this end a general thermodynamically consistent framework was used and damage and plastic functional were derived describing the PVC foam behavior. The damage functional contains fracture mechanics properties. Special attention was paid to the compression–tension load reversal of the material model, that may occur during underwater shock loading.  相似文献   

5.
The rheological nature of paper or board is usually treated either as elasto-plastic or as viscoelastic depending on the studied paper making process or behavior in converting and end use. In this paper we study several stress–strain curve models and the determination of material parameters from an elasto-plastic point of view. Finally, a suitable approach for all stress–strain curves measured from 180 strips is constructed using a linear function for an elastic region and a nonlinear function for a strain hardening region. This model determines a proportional limit (elastic limit) and gives fairly elegant dependencies between material/fitting parameters and two important factors of mechanical properties of paper: dry solids content and anisotropy. In this paper the dependency of a plastic strain on dry solids content and anisotropy is estimated using the introduced stress–strain curve model. Correspondingly, the model can be used to estimate many other mechanical behaviors, for example, the tension differences arising from non-uniform moisture content of the paper web profile. However, the main target of this study is to produce competent parameters based on modeled stress–strain curves for further construction of a material model. This elasto-plastic material model will be utilized in out-of-plane deformation and fracture models.  相似文献   

6.
In this paper, we have extended the granular mechanics approach to derive an elasto-plastic stress–strain relationship. The deformation of a representative volume of the material is generated by mobilizing particle contacts in all orientations. Thus, the stress–strain relationship can be derived as an average of the mobilization behavior of these local contact planes. The local behavior is assumed to follow a Hertz–Mindlin’s elastic law and a Mohr–Coulomb’s plastic law. Essential features such as continuous displacement field, inter-particle stiffness, and fabric tensor are discussed. The predictions of the derived stress–strain model are compared to experimental results for sand under both drained and undrained triaxial loading conditions. The comparisons demonstrate the ability of this model to reproduce accurately the overall mechanical behavior of granular media and to account for the influence of key parameters such as void ratio and mean stress. A part of this paper is devoted to the study of anisotropic specimens loaded in different directions, which shows the model capability of considering the influence of inherent anisotropy on the stress–strain response under a drained triaxial loading condition.  相似文献   

7.
金属成型过程接触分析的有限元法   总被引:4,自引:0,他引:4  
姜建华 《力学季刊》2002,23(3):402-406
以往通常将加工好的成型构件实物进行疲劳试验,以检验构件设计的合理性。这种实物试验方法在构件设计阶段,显得费时费力,成本很高,并且带有一定的盲目性。本文用大变形条件下的弹塑性有限元接触法模拟了某钢管构件的挤压成型过程,在算得残余应力的基础上,进一步分析了构件服役时在交变载荷作用下的应力,研究构件的最危险点及其应力谱。在算得危险点残余应力以及应力谱的基础上,再结合材料Goodman疲劳极限线图,对成型加工构件服役后的疲劳强度进行校核,有效提高产品的安全可靠度。该方法为成型加工构件的抗疲劳断裂设计提供了方便快捷的手段,降低了成型加工构件设计阶段及产品研发阶段的成本。  相似文献   

8.
This study presents the micro-scale behavior of granular materials under biaxial cyclic loading for different confining pressures using the two-dimensional (2D) discrete element method (DEM). Initially, 8450 ovals were generated in a rectangular frame without any overlap. Four dense samples having confining pressures of 15, 25, 50, and 100 kPa were prepared from the initially generated sparse sample. Numerical simulations were performed under biaxial cyclic loading using these isotropically compressed dense samples. The numerical results depict stress–strain–dilatancy behavior that was similar to that observed in experimental studies. The relationship between the stress ratio and dilatancy rate is almost independent of confining pressures during loading but significantly dependent on the confining pressures during unloading. The evolution of the coordination number, effective coordination number and slip coordination number depends on both the confining pressures and cyclic loading. The cyclic loading significantly affects the microtopology of the granular assembly. The contact fabric and the fabric-related anisotropy are reported, as well. A strong correlation between the stress ratio and the fabric related to contact normals is observed during cyclic loading, irrespective of confining pressures.  相似文献   

9.
为了深入地了解岩石的阻尼特性,利用WDT–1500多功能材料试验机,对砂岩、砾岩和砂砾岩进行了循环荷载试验,研究了岩石的动剪切模量和阻尼参数对应力、应变幅值和应力水平的响应特性,得到了动弹性模量和阻尼参数随应力幅值、应力水平及含水率的变化规律,讨论了其变化机理。证实了双曲线关系能够描述分级循环荷载作用下岩石的应力-应变关系,得到了动剪切模量和阻尼比与动应力、动应变之间的关系,建立了不同应力水平和不同应力幅值条件下岩石的动剪切模量与阻尼比关系模型,结果表明该模型能够描述分级循环荷载过程中阻尼行为。  相似文献   

10.
Part I presented a set of experiments in which pressurized tubes were cycled axially under stress control about a compressive mean stress. This loading history causes biaxial ratcheting involving compressive axial strain and expansion of the diameter of the tube. The compressive strain in turn induces the initiation and growth of axisymmetric wrinkles. Persistent cycling resulted in localization of the wrinkles and collapse. In Part II the problem is first modeled as a shell with initial axisymmetric imperfections while the biaxial ratcheting of the material is modeled using the Dafalias–Popov two-surface nonlinear kinematic hardening model. It is demonstrated that when suitably calibrated this modeling framework reproduces the prevalent ratcheting deformations and the evolution of wrinkling including the conditions at collapse accurately for all experiments. The calibrated model is then used to evaluate the ratcheting behavior of pipes under thermal-pressure cyclic loading histories experienced by axially restrained pipelines.  相似文献   

11.
 An experimental investigation has been made of thermal characteristics of a rectangular, annular single-phase natural circulation loop with the inner tube filled with a solid–liquid phase change material (PCM) under cyclic pulsating heat load. A rectangular, annular loop of 150 cm in height and 75 cm in width was constructed with an annular gap of 0.6 cm, within which water was filled. The inner tube of the annular loop was filled with a PCM (n-Eicosene) or air. Under the cyclic pulsating heat load, temperature field within the water-filled annular loop with PCM- or air-filled inner tube was found to evolve into a steady periodic variation for the range of parameters considered. The water temperature and/or its fluctuating amplitude along the heated or cooled sections of the loop with the PCM-filled inner tube were found to be markedly lower than those measured in the loop with the air-filled inner tube under the identical conditions. On the other hand, along the insulated sections of the loop a somewhat minute difference in temporal variations of the water temperatures exists between the loops with PCM- and air-filled inner tube. In addition, at the outer wall along the cooled section, a time-periodic variation of temperature was detected in synchronizing with the pulsating heat load. Parametric effects of varying amplitude and time-period of the pulsating heat input, as well as of varying the inlet coolant temperature of the cooling jacket were investigated. Received on 30 June 2000 The authors are grateful for the support for this study from National Science Council of Republic of China in Taiwan under the Project Nos. NSC87-2212-E006-054 and NSC88-2212-E006-022.  相似文献   

12.
This paper describes a method to analyze the elasto-plastic large deflection of a curved beam subjected to a tip concentrated follower load. The load is made to act at an arbitrary inclination with the tip tangent. A moment-curvature based constitutive law is obtained from linearly hardening model. The deflection governing equation obtained is highly non-linear owing to both kinematics and material non-linearity. It is linearized to obtain the incremental differential equation. This in turn is solved using the classical Runge–Kutta 4th order explicit solver, thereby avoiding iterations. Elastic results are validated with published literature and the new results pertaining to elasto-plastic cases are presented in suitable non-dimensional form. The load to end angle response of the structure is studied by varying normalized material and kinematic parameters. It is found that the response curves overlap at small deflection corresponding to elastic deformation and diverge for difference in plastic property. The divergent response curves intersect with each other at higher deflection. The results presented also show that the approach may be used to obtain desired non-uniformly curved beam by suitably loading a uniform curvature beam.  相似文献   

13.
An experimental study was carried out for the cyclic properties of pure aluminium subjected to uniaxial cyclic straining and stressing. For a material of pure aluminium the effects of the cyclic strain amplitude history and mean strain on the cyclic deformation behavior were investigated, and the influences of stress amplitude, mean stress and their histories on cyclic creep (i. e., ratcheting) were analyzed. It is shown that either uniaxial cyclic property under cyclic straining or ratcheting behavior under asymmetric uniaxial loading depends not only on the current loading, but also on the previous loading history. Some significant results were obtained.Financial support from NFSC is acknowledged.  相似文献   

14.
The time-dependent strain cyclic characteristics and ratchetting behaviours of SS304 stainless steel were investigated by uniaxial/multiaxial cyclic loading tests at room and elevated temperatures (350 and 700 °C). The effects of loading rate, peak/valley strain or stress holds, ambient temperature and non-proportional loading path on the cyclic softening/hardening and ratchetting behaviours of the material were discussed. It is shown that: the cyclic deformation of the material presents remarkable time-dependence at room temperature and 700 °C; the cyclic hardening feature and ratchetting strain depend significantly on straining or stressing rate, hold-time, ambient temperature and the non-proportionality of loading path; the time-dependent ratchetting is resulted from the slight opening of hysteresis loop and visco-plasticity together, and the viscosity is a dominating factor at 700 °C; at 350 °C, abnormal rate-dependence and quick shakedown of ratchetting are observed due to the dynamic strain aging of the material at this temperature. Some significant conclusions are obtained, which are useful to construct a constitutive model to describe the time-dependent ratchetting behaviour of the material. It is also stated that the unified visco-plastic constitutive model discussed here cannot provide reasonable simulation to the time-dependent ratchetting at 700 °C, especially to that with certain peak/valley stress hold, since the effect of the high viscosity on time-dependent ratchetting cannot be properly described by using a unified visco-plastic flow rule.  相似文献   

15.
考虑路径相关性的非比例循环塑性本构模型   总被引:2,自引:0,他引:2  
匡震邦  赵社戌 《力学学报》1999,31(4):484-492
根据非比例加载下金属材料响应的延迟特性及加载路径相关性,选取沿应力迹法向的塑性应变的累积量作为非比例加载影响的度量,相应给出反映非比例附加强化的变量,并假设其模量和强化率与加载路径的几何参数相关.为反映由于非比例加载而引起的材料强化的异向效应,在Valanis的塑性内时响应方程中引入与加载路径几何性质有关的应力项,构成非比例循环塑性本构关系.对316和304不锈钢材料在一些典型非比例循环加载路径下的应力响应进行了理论预测,与Benallal等及McDowell的实验结果取得了良好的一致.  相似文献   

16.
Key issues in cyclic plasticity modeling are discussed based upon representative experimental observations on several commonly used engineering materials. Cyclic plasticity is characterized by the Bauschinger effect, cyclic hardening/softening, strain range effect, nonproporitonal hardening, and strain ratcheting. Additional hardening is identified to associate with ratcheting rate decay. Proper modeling requires a clear distinction among different types of cyclic plasticity behavior. Cyclic hardening/softening sustains dependent on the loading amplitude and loading history. Strain range effect is common for most engineering metallic materials. Often, nonproportional hardening is accompanied by cyclic hardening, as being observed on stainless steels and pure copper. A clarification of the two types of material behavior can be made through benchmark experiments and modeling technique. Ratcheting rate decay is a common observation on a number of materials and it often follows a power law relationship with the number of loading cycles under the constant amplitude stress controlled condition. Benchmark experiments can be used to explore the different cyclic plasticity properties of the materials. Discussions about proper modeling are based on the typical cyclic plasticity phenomena obtained from testing several engineering materials under various uniaxial and multiaxial cyclic loading conditions. Sufficient experimental evidence points to the unambiguous conclusion that none of the hardening phenomena (cyclic hardening/softening, strain range effect, nonproportional hardening, and strain hardening associated with ratcheting rate decay) is isotropic in nature. None of the hardening behavior can be properly modeled with a change in the yield stress.  相似文献   

17.
周喆  匡震邦 《力学学报》1999,31(2):185-192
在Ilyushin五维应变空间下,利用弹塑性有限变形的有限元法。研究了两相介质在非比例加载下的弹塑性特性,提出了应力模、延迟角随应变路径、转折角变化的近似计算公式,计算结果还表明,工程材料的许多复杂本构特性都是由第二相介质引起的.  相似文献   

18.
Uniaxial and multiaxial ratchetting tests were conducted at temperatures between 200 and 600 °C on modified 9Cr–1Mo steel, which exhibits both viscoplastic and cyclic softening behavior. Anomalous behavior was observed in the stress-controlled uniaxial ratchetting tests; the material exhibited outstanding ratchetting in the tensile direction under zero mean stress. Under the uniaxial conditions, the ratchetting deformation significantly depended on the loading rate and hold time in addition to parameters such as the maximum stress and stress ratio. The uniaxial ratchetting was also accelerated to a great extent when cyclic deformation was given before the ratchetting tests. Under the multiaxial conditions, the ratchetting depended on the steady stress, cyclic strain range and strain rate. The ratchetting progressed faster as the steady stress or strain range became larger, or the strain rate became smaller, as expected. Monotonic compression tests were carried out to investigate the reason for the rachetting under no mean stress. Strain range change tests were also conducted to investigate the effect of strain range on the cyclic softening behavior of the material in detail.  相似文献   

19.
基于韧性耗散模型的损伤定量分析方法   总被引:7,自引:0,他引:7  
胡明敏 《力学季刊》2000,21(3):387-391
材料的静力韧性便于工程测量,对疲劳损伤较其它宏观损伤变量更敏感。本文以材料静力韧性为宏观损伤变量,依据疲劳过程中金属材料韧性随疲劳循环加载而变化的实验结果的规律分析,得到了应力和循环数表达的损伤演化方程和损伤累积模型。该模型能较好地反映加载顺序的影响。推导出该疲劳损伤累积模型在多级加载下的递推公式。经四种金属材料疲劳试验数据验证结果表明,该模型预测疲劳寿命是较为满意的。由于疲劳试验数据分散性大,结果有待进一步验证。  相似文献   

20.
A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号