首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
考虑路径相关性的非比例循环塑性本构模型   总被引:2,自引:0,他引:2  
匡震邦  赵社戌 《力学学报》1999,31(4):484-492
根据非比例加载下金属材料响应的延迟特性及加载路径相关性,选取沿应力迹法向的塑性应变的累积量作为非比例加载影响的度量,相应给出反映非比例附加强化的变量,并假设其模量和强化率与加载路径的几何参数相关.为反映由于非比例加载而引起的材料强化的异向效应,在Valanis的塑性内时响应方程中引入与加载路径几何性质有关的应力项,构成非比例循环塑性本构关系.对316和304不锈钢材料在一些典型非比例循环加载路径下的应力响应进行了理论预测,与Benallal等及McDowell的实验结果取得了良好的一致.  相似文献   

2.
Some novel discriminating multiaxial cyclic strain paths with incremental and random sequences were used to investigate cyclic deformation behavior of materials with low and high sensitivity to non-proportional loadings. Tubular specimens made of 1050 QT steel with no non-proportional hardening and 304L stainless steel with significant non-proportional hardening were used. 1050 QT steel was found to exhibit very similar behavior under various multiaxial loading paths, whereas significant effects of loading sequence were observed for 304L stainless steel. In-phase cycles with a random sequence of axial-torsion cycles on an equivalent strain circle were found to cause cyclic hardening levels similar to 90° out-of-phase loading of 304L stainless steel. In contrast, straining with a small increment of axial-torsion on an equivalent strain circle results in higher stress than for in-phase loading of 304L stainless steel, but the level of hardening is lower than for 90° out-of-phase loading. Tanaka’s non-proportionality parameter coupled with a Armstrong–Fredrick incremental plasticity model, and Kanazawa et al.’s empirical formulation as a representative of such empirical models were used to predict the stabilized stress response of the two materials under variable amplitude axial-torsion strain paths. Consistent results between experimental observations and predictions were obtained by employing the Tanaka’s non-proportionality parameter. In contrast, the empirical model resulted in significant over-prediction of stresses for 304L stainless steel.  相似文献   

3.
复杂加载下混凝土的弹塑性本构模型   总被引:1,自引:0,他引:1  
万征  姚仰平  孟达 《力学学报》2016,48(5):1159-1171
混凝土材料在不同应力路径下或复杂加载条件下会表现出差异性显著的应力应变关系,在小幅循环加载条件下,其应力应变关系会表现出类似于弹性变形的滞回曲线.在不同应力水平下,混凝土的应力应变关系以及破坏特性都具有静水压力相关特点,即随着静水压力增大,各向异性强度特性弱化.此外,混凝土受压及受拉破坏机理不同,因而对应于混凝土硬化损伤亦有不同,即可分为受压硬化损伤,受拉硬化损伤及两者的混合硬化损伤类型.基于Hsieh模型,对该模型进行了三点改进.(1)针对小幅循环加载下混凝土无塑性变形的试验规律,而模型中在应力水平较低的循环加载条件下始终存在塑性变形的预测问题,采用在边界面模型框架下,设置了应力空间的弹性域,初始屈服面与后续临界状态屈服面几何相似的假定.(2)基于广义非线性强度准则将原模型采用变换应力方法将其推广为三维弹塑性本构模型,采用变换后模型可合理的考虑不同应力路径对于子午面以及偏平面上静水压力效应形成的影响,并避免了边界面应力点奇异问题.(3)分别对拉压两种加载损伤模式建议了相应的硬化参数表达式,可分别用于描述上述加载中产生的应变软化及强度退化行为.基于多种加载路径模拟表明:所建立的三维弹塑性本构模型可合理地用于描述混凝土的一般应力应变关系特性.   相似文献   

4.
在统一粘塑性循环本构理论框架下,以Ohno-Abdel-Karim非线性随动硬化模型为基础,建立了一个循环本构模型。模型通过引入塑性应变幅值记忆效应,并在塑性应变记忆项中加入恢复系数,提高了对循环硬化材料单轴棘轮行为的预言能力。将模型应用于316L不锈钢单轴棘轮行为的描述中,模拟不同平均应力、应力幅值下的棘轮应变,均与实验数据吻合较好,证明本文改进的本构模型能合理地描述循环硬化材料的单轴棘轮行为。  相似文献   

5.
在Valanis的内时本构理论的框架中,引入内结构张量以反映由于非比例加载而引起金属材料的附加等向强化及异向强化效应,同时提出材料强化程度的度量采用沿路径法线方向的塑性应变分量来描述.这些考虑的有效性已经通过用所建模型对304不锈钢材料在一些典型非比例循环加载路径下的响应进行的理论预测得到了验证;将该模型应用于U71Mn材料室温单轴棘轮行为描述中,结果显示内结构张量的引入不仅能较好地反映应变控制下的非比例附加效应,而且也能较好地反映应力控制下塑性应变的累积及变化率.  相似文献   

6.
循环软化45碳钢和循环硬化304不锈钢的棘轮行为实验研究   总被引:1,自引:1,他引:0  
对循环软化45碳钢的单轴应力循环下的平均应力、应力幅值以及先前应变循环对棘轮效应的影响进行了实验研究;并对循环硬化的304不锈钢进行了多种非比例循环加载路径下路径形状、路径等效应力幅值、平均应变与平均应力对材料棘轮变形行为的影响实验.发现平均应力和应力幅值及其历史对于材料的棘轮行为都有很大的影响.  相似文献   

7.
对316L不锈钢的非比例循环粘塑性本构描述   总被引:1,自引:0,他引:1  
对循环硬化的316L不锈钢提出了一个考虑非比例循环加载下流动和硬化特性的粘塑性本构模型。模型中,通过随动硬化的背应力演化以各向同性阻力演化非比例循环路径及其历史的依赖关系来表征材料的非比例循环附加硬化和非比例循环流动特性,将模型用于预测316L不锈钢的圆形,正菱形应变路径的复杂循环变形行为,其预言结果与实验结果吻合很好。  相似文献   

8.
The uniaxial and non-proportionally multiaxial ratcheting behaviors of SS304 stainless steel at room temperature were initially researched by experiment and then were theoretically described by a cyclic constitutive model in the framework of unified visco-plasticity. The effects of cyclic stress amplitude, mean stress, and their histories on the ratcheting were experimentally investigated under uniaxial and different multiaxial loading paths. The shapes of non-proportional loading paths were linear, circular, elliptical and rhombic, respectively. In the constitutive model, the rate-dependent behavior of the material was reflected by a viscous term; the cyclic flow and cyclic hardening behaviors of the material under asymmetrical stress-controlled cycling were reflected by the evolution rules of kinematic hardening back stress and isotropic deforming resistance, respectively. The effect of loading history on the ratcheting was also considered by introducing two fading memorization functions for maximum inelastic strain amplitude and isotropic deformation resistance, respectively, into the constitutive model. The effect of multiaxial loading path on the ratcheting was reflected by a non-proportional factor defined in this work. The predicting ability of the developed model was proved to be good by comparing the simulations with corresponding experiments.  相似文献   

9.
1Cr18Ni9Ti不锈钢的非比例循环强化性能   总被引:9,自引:0,他引:9  
陈旭  田涛  安柯 《力学学报》2001,33(5):698-705
对1Cr18Ni9Ti不锈钢进行了各种比例和非比例循环本构实验,其中包括圆路径、正方形、正菱形、蝶形、三角形和两种十字形应变路径。表明其具有明显的非比例循环附加强化。在相同的等效应变幅值上,材料的附加强化与路径密切相关。对于圆路径,其附加强化度最大可达60%。通过对不同应变历史的实验研究表明,先前小的非比例度的加载历史对后继大的非比例度路径的强化没有影响;而先前大非比例度的加载路径对后继小非比例度路径的循环强化有较大影响。  相似文献   

10.
A possible physical mechanism for additional hardening is proposed on the basis of an analysis of experiments on nonproportional cyclic loading of metals. A model for an elastoplastic polycrystal with a hardening law taking into account the interaction of slip systems is developed. The effect of additional hardening for elliptic strain paths and the shapes of stress paths and hysteresis loops typical of elliptic strain paths are described qualitatively. A violation of the assumption of the local determinacy and orientations of stress paths is considered for the square strain paths taking place in tests of chromium-nickel austenite stainless steels. Perm' State Technical University, Perm', 614600. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 6, pp. 144–151, November–December, 1999.  相似文献   

11.
Domain switching in piezoelectric materials is caused by external loads such as electric field and stress that leads to non-linear behaviour. A study is carried out to compare the non-linear behaviour of 1–3 piezocomposites with different volume fractions and bulk piezoceramics. Experiments are conducted to measure the electrical displacement and strain on piezocomposites and bulk ceramics under high cyclic electrical loading and constant compressive prestress. A thermodynamically consistent uni-axial framework is developed to predict the nonlinear behaviour by combining the phenomenological and micromechanical techniques. Volume fractions of three distinct uni-axial variants (instead of six variants) are used as internal variables to describe the microscopic state of the material. In this model, the grain boundary effects are taken into account by introducing the back fields (electric field and stress) as non-linear kinematic hardening functions. An analytical model based on equivalent layered approach is used to calculate effective properties such as elastic, piezoelectric, and dielectric constants for different volume fractions of piezocomposites. The predicted effective properties are incorporated in the proposed uni-axial model and the dielectric hysteresis (electrical displacement versus electric field) as well as butterfly curves (strain versus electric field) are simulated. Comparison between the experiments and simulations show that this model can reproduce the characteristics of non-linear response. It is observed that the variation in fiber volume fraction and compressive stress has a significant influence on the response of the 1–3 piezocomposites.  相似文献   

12.
304不锈钢室温和高温单轴循环塑性的实验研究   总被引:2,自引:0,他引:2  
对304不锈钢进行了室温和高温单轴应变控制和应力控制下的系统循环试验。揭示和分析了循环应变幅值、平均应变及其历史和温度历史对材料应变循环特性的影响以及应力幅值、平均应力及其历史以及温度对循环棘轮行为的影响。也讨论了应变循环和应力循环间交互作用对材料循环塑性行为的影响。研究表明,无益单轴应变循环特性还是非对称单轴应力循环下的棘轮效应不仅取决于当前温度和加载状态,而且强烈依赖于其加载历史。研究得到了一些有助于304不锈钢室温和高温单轴循环行为本构描述的结果。  相似文献   

13.
Cyclic plasticity experiments were conducted on a pure polycrystalline copper and the material was found to display significant cyclic hardening and nonproportional hardening. An effort was made to describe the cyclic plasticity behavior of the material. The model is based on the framework using a yield surface together with the Armstrong–Frederick type kinematic hardening rule. No isotropic hardening is considered and the yield stress is assumed to be a constant. The backstress is decomposed into additive parts with each part following the Armstrong–Frederick type hardening rule. A memory surface in the plastic strain space is used to account for the strain range effect. The Tanaka fourth order tensor is used to characterize nonproportional loading. A set of material parameters in the hardening rules are related to the strain memory surface size and they are used to capture the strain range effect and the dependence of cyclic hardening and nonproportional hardening on the loading magnitude. The constitutive model can describe well the transient behavior during cyclic hardening and nonproportional hardening of the polycrystalline copper. Modeling of long-term ratcheting deformation is a difficult task and further investigations are required.  相似文献   

14.
Key issues in cyclic plasticity modeling are discussed based upon representative experimental observations on several commonly used engineering materials. Cyclic plasticity is characterized by the Bauschinger effect, cyclic hardening/softening, strain range effect, nonproporitonal hardening, and strain ratcheting. Additional hardening is identified to associate with ratcheting rate decay. Proper modeling requires a clear distinction among different types of cyclic plasticity behavior. Cyclic hardening/softening sustains dependent on the loading amplitude and loading history. Strain range effect is common for most engineering metallic materials. Often, nonproportional hardening is accompanied by cyclic hardening, as being observed on stainless steels and pure copper. A clarification of the two types of material behavior can be made through benchmark experiments and modeling technique. Ratcheting rate decay is a common observation on a number of materials and it often follows a power law relationship with the number of loading cycles under the constant amplitude stress controlled condition. Benchmark experiments can be used to explore the different cyclic plasticity properties of the materials. Discussions about proper modeling are based on the typical cyclic plasticity phenomena obtained from testing several engineering materials under various uniaxial and multiaxial cyclic loading conditions. Sufficient experimental evidence points to the unambiguous conclusion that none of the hardening phenomena (cyclic hardening/softening, strain range effect, nonproportional hardening, and strain hardening associated with ratcheting rate decay) is isotropic in nature. None of the hardening behavior can be properly modeled with a change in the yield stress.  相似文献   

15.
A recent study by Hassan et al. [Hassan, T., Taleb, L., Krishna, S., 2008. Influences of nonproportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plasticity, 24, 1863–1889.] demonstrated that some of the nonproportional ratcheting responses under stress-controlled loading histories cannot be simulated reasonably by two recent cyclic plasticity models. Two major drawbacks of the models identified were: (i) the stainless steel 304 demonstrated cyclic hardening under strain-controlled loading whereas cyclic softening under stress-controlled loading, which depends on the strain-range and which the existing models cannot describe; (ii) the change in biaxial ratcheting responses due to the change in the degree of nonproportionality were not simulated well by the models. Motivated by these findings, two modified cyclic plasticity models are evaluated in predicting a broad set of cyclic and ratcheting response of stainless steel 304. The experimental responses used in evaluating the modified models included both proportional (uniaxial) and nonproportional (biaxial) loading responses from Hassan and Kyriakides [Hassan, T., Kyriakides, S., 1994a. Ratcheting of cyclically hardening and softening materials. Part I: uniaxial behavior. Int. J. Plasticity, 10, 149–184; Hassan, T., Kyriakides, S., 1994b. Ratcheting of cyclically hardening and softening materials. Part II: multiaxial behavior. Int. J. Plasticity, 10, 185–212.] and Hassan et al. [Hassan, T., Taleb, L., Krishna, S., 2008. Influences of nonproportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plasticity, 24, 1863–1889.] The first model studied is a macro-scale, phenomenological, constitutive model originally proposed by Chaboche et al. [Chaboche, J.L., Dang-Van, K., Cordier, G., 1979. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. In: Proceedings of the Fifth International Conference on SMiRT, Div. L, Berlin, Germany, L11/3.]. This model was systematically modified for incorporating strain-range dependent cyclic hardening–softening, and proportional and nonproportional loading memory parameters. The second model evaluated is a polycrystalline model originally proposed by Cailletaud [Cailletaud, G., 1992. A micromechanical approach to inelastic behavior of metals. Int. J. Plasticity, 8, 55–73.] based on crystalline slip mechanisms. These two models are scrutinized against simulating hysteresis loop shape, cyclic hardening–softening, cross-effect, cyclic relaxation, subsequent cyclic softening and finally a broad set of ratcheting responses under uniaxial and biaxial loading histories. The modeling features which improved simulations for these responses are elaborated in the paper. In addition, a novel technique for simulating both the monotonic and cyclic responses with one set of model parameters is developed and validated.  相似文献   

16.
Stress–strain response under constant and variable strain-rate is studied for selected models of inelastic behavior. The derived closed-form solutions for uniaxial loading enable simple evaluation of the strain-rate effects on the material response. The effect of an abrupt change of strain-rate is also examined. Non-Newtonian viscosity which decreases with an increasing strain-rate is incorporated in the analysis. Parabolic and hyperbolic hardening are used to describe the plastic response in monotonic loading. A three-dimensional generalization of an elastic–viscoplastic model is employed to study the stress relaxation in simple shear. A combined isotropic–kinematic hardening and the concept of overstress are used in the analysis. The unloading nonlinearity of the stress–strain curve is then discussed.  相似文献   

17.
Perfectly elastoplastic constitutive model is modified through a smoothing factor introduced by Liu [Liu, C.-S., 2003. Smoothing elastoplastic stress–strain curves obtained by a critical modification of conventional models. Int. J. Solids Struct. 40, 2121–2145]. The new model allows plasticity to happen in a non-zero-measure yield volume in stress space, rather than that of conventional zero-measure yield surface, and within the yield volume the plastic modulus is varying continuously. It endows a specific strain-hardening rule of flow stress and is able to describe the phenomena of strain hardening, cyclic hardening, the Bauschinger effect, mean-stress relaxation, strain ratcheting, out-of-phase hardening, as well as erasure-of-memory. In order to suppress the over prediction of ratcheting we consider a scalar function of smoothing factor, which can simulate the saturation behavior of uniaxial/multiaxial strain ratcheting. These effects are demonstrated through numerical examples. The existence of stress equilibrium point and limiting surface is a natural result without requiring an extra design. Moreover, the non-linear constitutive equations can be converted into a linear system for augmented stress in the Minkowski space, of which the symmetry group is a proper orthochronous Lorentz group SOo(5, 1). The augmented stress is a time-like vector, moving on hyperboloids inside the cone. When taking the Prager kinematic hardening rule into account we can simulate some cyclic behaviors of SAE 4340 and grade 60 steels within a certain accuracy through the use of only three material constants and a fixed smoothing factor. To simulate the ratcheting behaviors of SS304 stainless steel we allow the smoothing factor to be an exponential decaying function of λ.  相似文献   

18.
19.
In this part, the Khan–Huang–Liang (KHL) constitutive model was extended to account for kinematic hardening characteristic behavior of materials. The extended model is then generalized and used to simulate experimental response of oxygen free high conductivity (OFHC) copper under cyclic shear straining and biaxial tension–torsion (multiaxial ratchetting) experiments presented in Part I (Khan et al., 2007). In addition, a new modification for the non-linear kinematic hardening rule of Karim–Ohno (Abdel-Karim and Ohno, 2000) is proposed to simulate multiaxial ratchetting behaviors. Although, the kinematic hardening contributes the most to the response, it is shown that, the loading rate effect, and a coupled isotropic and kinematic hardening effect should also be considered while simulating the multiaxial ratchetting behavior of OFHC copper. Furthermore, the newly modified kinematic hardening rules is able to fairly well simulate the multiaxial ratchetting experiments under different loading conditions, irrespective of the value of applied axial tensile stress, shear strain amplitude, pre-cyclic hardening and/or loading sequence.  相似文献   

20.
In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension–compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto–plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension–compression–tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号