首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
利用INSTRON-1185型万能材料试验机在准静态加载环境下对不同密度的聚氨酯泡沫的抗压、抗拉及抗弯性能进行了较系统的实验研究,分析了聚氨酯泡沫材料的力学性能及吸能特性随表观密度的变化规律.研究表明,聚氨醋泡沫材料的杭压性能优于其杭拉性能,该材料具有良好的吸能特性,且其吸能特性随密度的增大而提高.  相似文献   

2.
复杂加载下混凝土的弹塑性本构模型   总被引:1,自引:0,他引:1  
万征  姚仰平  孟达 《力学学报》2016,48(5):1159-1171
混凝土材料在不同应力路径下或复杂加载条件下会表现出差异性显著的应力应变关系,在小幅循环加载条件下,其应力应变关系会表现出类似于弹性变形的滞回曲线.在不同应力水平下,混凝土的应力应变关系以及破坏特性都具有静水压力相关特点,即随着静水压力增大,各向异性强度特性弱化.此外,混凝土受压及受拉破坏机理不同,因而对应于混凝土硬化损伤亦有不同,即可分为受压硬化损伤,受拉硬化损伤及两者的混合硬化损伤类型.基于Hsieh模型,对该模型进行了三点改进.(1)针对小幅循环加载下混凝土无塑性变形的试验规律,而模型中在应力水平较低的循环加载条件下始终存在塑性变形的预测问题,采用在边界面模型框架下,设置了应力空间的弹性域,初始屈服面与后续临界状态屈服面几何相似的假定.(2)基于广义非线性强度准则将原模型采用变换应力方法将其推广为三维弹塑性本构模型,采用变换后模型可合理的考虑不同应力路径对于子午面以及偏平面上静水压力效应形成的影响,并避免了边界面应力点奇异问题.(3)分别对拉压两种加载损伤模式建议了相应的硬化参数表达式,可分别用于描述上述加载中产生的应变软化及强度退化行为.基于多种加载路径模拟表明:所建立的三维弹塑性本构模型可合理地用于描述混凝土的一般应力应变关系特性.   相似文献   

3.
强地震荷载作用下含断层岩质边坡稳定性分析   总被引:2,自引:0,他引:2  
基于岩石材料的弹塑性损伤理论,引入两个独立的损伤变量分别控制岩石的拉压行为,通过对地震荷载作用下边坡场地响应的有限无数值模拟,总结含裂隙的岩质边坡发生局部损伤软化、破坏的区域的扩展、演化过程和规律.结合对某大型水电坝坝址左岸的岩质边坡在强地震动载荷作用下(百年一遇、超越概率2%)发生破坏的数值模拟,揭示这类边坡滑坡的机理,并根据模拟的结果,对整治边坡破坏提出参考依据.  相似文献   

4.
Constitutive modeling of ice in the high strain rate regime   总被引:1,自引:0,他引:1  
The objective of the present work is to propose a constitutive model for ice by considering the influence of important parameters such as strain rate dependence and pressure sensitivity on the response of the material. In this regard, the constitutive model proposed by Carney et al. (2006) is considered as a starting basis and subsequently modified to incorporate the effect of brittle cracking within a continuum damage mechanics framework. The damage is taken to occur in the form of distributed cracking within the material during impact which is consistent with experimental observations. At the point of failure, the material is assumed to be fluid-like with deviatoric stress almost dropping down to zero. The constitutive model is implemented in a general purpose finite element code using an explicit formulation. Several single element tests under uniaxial tension and compression, as well as biaxial loading are conducted in order to understand the performance of the model. Few large size simulations are also performed to understand the capability of the model to predict brittle damage evolution in un-notched and notched three point bend specimens. The proposed model predicts lower strength under tensile loading as compared to compressive loading which is in tune with experimental observations. Further the model also asserts the strain rate dependency of the strength behavior under both compressive as well as tensile loading, which also corroborates well with experimental results.  相似文献   

5.
Based on pair functional potentials, Cauchy-Born rule and slip mechanism, a material model assembling with spring-bundle components, a cubage component and slip components is established to describe the elasto-plastic damage constitutive relation under finite deformation. The expansion/shrink, translation and distortion of yield surfaces can be calculated based on the hardening rule and Bauschinger effect defined on the slip component level. Both kinematic and isotropic hardening are included. Numerical simulations and predictions under tension, torsion, and combined tension-torsion proportional/non-proportional loading are performed to obtain the evolution of subsequent yield surfaces and elastic constants and compare with two sets of experimental data in literature, one for a very low work hardening aluminum alloy Al 6061-T6511, and another for a very high work hardening aluminum alloy annealed 1100 Al. The feature of the yield surface in shape change, which presents a sharp front accompanied by a blunt rear under proportional loading, is described by the latent hardening and Bauschinger effect of slip components. Further, the evolution law of subsequent yield surfaces under different proportional loading paths is investigated in terms of their equivalence. The numerical simulations under non-proportional loading conditions for annealed 1100 Al are performed, and the subsequent yield surfaces exhibit mixed cross effect because the kinematic hardening and isotropic hardening follow different evolution tendency when loading path changes. The results of non-proportional loading demonstrate that the present model has the ability to address the issue of complex loading due to the introduction of state variables on slip components. Moreover, as an elasto-plastic damage constitutive model, the present model can also reflect the variation of elastic constants through damage defined on the spring-bundle components.  相似文献   

6.
Polymeric composite sandwich structures, often manufactured using a thick foam core material and thin composite facings, are of significant interest in naval applications. This paper summarizes the coupled effect of sea water and low temperature on the mechanical properties of closed cell polymeric H100 foam core material. The study considers the effects of harsh sea environmental conditions on the fracture and deformation behavior of such a foam material under complex loading conditions that include tension, torsion, compression, and true-triaxial stress paths. Mechanical testing techniques are developed using coupon samples of suitable geometry that minimize grip effects on these low density complex foam materials, along with information associated with the observed cross-anisotropic behavior. Interfacial delamination fracture response for the sandwich structures due to the combined effects of sea water and low temperature are evaluated and the associated degradation in critical energy release rate for delamination is found to be substantial. Experimental data for H100 foam cores associated with moisture induced expansional strains are also included.  相似文献   

7.
张健  赵桂平  卢天健 《力学学报》2015,47(4):651-663
基于显微计算机断层扫描影像信息, 逆向重建闭孔泡沫铝试件的三维细观有限元模型, 定量研究闭孔泡沫铝在多轴压缩载荷作用下的大变形力学行为. 讨论了泡沫金属唯象弹塑性本构参数的确定方法, 根据计算结果确定了3 个有代表性的泡沫材料本构模型的本构参数, 并验证了这些本构模型在描述多轴压缩应力状态下的精度. 研究表明, 对于单轴压缩, 3 个本构模型的屈服面均有很好的精度;对于静水压缩, 有限元软件"ABAQUS"的可压缩泡沫本构模型屈服面会发生严重偏离, 陈-卢本构模型"屈服面" 略微低估静水压缩的屈服应力, 而体积强化本构模型的屈服面有很好的精度.   相似文献   

8.
A robust understanding and modeling of the yield behavior in solid foams under complex stress states is essential to design and analysis of optimal structures using these lightweight materials. In pursuit of this objective a new custom-built Multi-Axial Testing Apparatus (MATA) is developed to probe the yield surface of transversely isotropic Divinycell H-100 PVC foam under a multitude of uniaxial, biaxial and triaxial strain paths. Experimental yield data produced constitutes the most comprehensive data set ever produced for any foam as it covers the entire spectrum of stress paths from hydrostatic compression to hydrostatic tension. Experimental results reveal that yielding in foams exhibits not only a quadratic pressure dependence, which is widely recognized in literature, but also a significant linear pressure dependence, which has been largely overlooked in previous studies. A new energy-based yield criterion developed for transversely isotropic foams is also validated using the experimental yield data.  相似文献   

9.
复合材料层合板面内渐进损伤分析的CDM模型   总被引:2,自引:0,他引:2  
基于连续介质损伤力学,提出了一个预测复合材料层合板面内渐进损伤分析的模型,它包括损伤表征、损伤判定和损伤演化3 部分. 模型能够区分纤维拉伸断裂、纤维压缩断裂、纤维间拉伸损伤和纤维间压缩损伤4 种损伤模式,定义了与4 个损伤模式对应的损伤状态变量,导出了材料主轴系下损伤前后材料本构之间的关系. 损伤起始采用Puck 准则判定,损伤演化由特征长度内应变能释放密度控制. 假定材料服从线性应变软化行为,建立了损伤状态变量关于断裂面上等效应变的渐进损伤演化法则. 模型涵盖了复合材料面内损伤起始、演化直至最终失效的全过程. 完成了含孔[45/0/-45/90]2S 层合板在拉伸和压缩载荷下失效分析,结果表明该模型能合理进行层合板的强度预测和损伤失效分析.   相似文献   

10.
复合材料层合板面内渐进损伤分析的CDM模型   总被引:2,自引:0,他引:2  
基于连续介质损伤力学,提出了一个预测复合材料层合板面内渐进损伤分析的模型,它包括损伤表征、损伤判定和损伤演化3 部分. 模型能够区分纤维拉伸断裂、纤维压缩断裂、纤维间拉伸损伤和纤维间压缩损伤4 种损伤模式,定义了与4 个损伤模式对应的损伤状态变量,导出了材料主轴系下损伤前后材料本构之间的关系. 损伤起始采用Puck 准则判定,损伤演化由特征长度内应变能释放密度控制. 假定材料服从线性应变软化行为,建立了损伤状态变量关于断裂面上等效应变的渐进损伤演化法则. 模型涵盖了复合材料面内损伤起始、演化直至最终失效的全过程. 完成了含孔[45/0/-45/90]2S 层合板在拉伸和压缩载荷下失效分析,结果表明该模型能合理进行层合板的强度预测和损伤失效分析.  相似文献   

11.
A generalization of Pobedrya’s viscoelasticity constitutive relations is considered for an isotropic material with an elastic behavior of the material volume. Two model problems are discussed for a specimen under uniform compression and uniaxial tension. The resulting expressions for strains are used to formulate some necessary conditions for a nonrelaxing behavior of the material volume. The case of an arbitrary low loading of the specimen is examined. It is proved that the obtained nonrelaxing conditions are not only necessary but are also sufficient.  相似文献   

12.
泡沫铝的单向力学行为   总被引:13,自引:2,他引:13  
王曦  虞吉林 《实验力学》2001,16(4):438-443
本文对不同孔径的开孔泡沫铝材料的单向拉伸性能和单向压缩性能进行了研究,揭示了泡沫铝材料的变形机理,并且发现相对密度不是确定材料力学属性的唯一参数,孔径大小对材料的力学性能也有一定的影响。基于实验数据,我们讨论了材料的宏观力学性能和微观结构的联系,并利用Ramberg-Osgood模型描述了材料的单轴拉伸一维应力应变关系。  相似文献   

13.
研究混凝土结构在冲击载荷下的力学特性对武器以及防护结构的设计和评估具有重要意义,而合适的材料模型可以更准确地预测混凝土结构的力学行为和破坏模式。因此,本文中提出了一种改进的混凝土塑性损伤材料模型来描述其在冲击载荷下的力学响应。该改进模型考虑了压力-体积应变关系、应变率效应、洛德角效应和塑性损伤累积对混凝土材料力学特性的影响,并引入了一个与损伤相关的硬化/软化函数来描述压缩状态下的应变硬化和软化行为。随后,通过对3个独立的强度面进行线性插值得到了该改进模型的破坏强度面,并采用部分关联流动法则考虑了混凝土材料的体积膨胀特性。最后,开展了单个单元在不同加载条件下和弹体贯穿钢筋混凝土靶的数值模拟,验证了该改进模型的可行性、准确性以及预测性能提升。  相似文献   

14.
An energy-dissipation based viscoplastic consistency model is presented to describe the performance of concrete under dynamic loading. The development of plasticity is started with the thermodynamic hypotheses in order that the model may have a sound theoretical background. Independent hardening and softening and the rate dependence of concrete are described separately for tension and compression. A modified implicit backward Euler integration scheme is adopted for the numerical computation. Static and dynamic behavior of the material is illustrated with certain numerical examples at material point level and structural level, and compared with existing experimental data. Results validate the effectiveness of the model.  相似文献   

15.
An orthotropic polymeric foam with transverse isotropy (Divinycell H250) used in composite sandwich structures was characterized at various strain rates. Uniaxial experiments were conducted along principal material axes as well as along off-axis directions under tension, compression, and shear to determine engineering constants, such as Young??s and shear moduli. Uniaxial strain experiments were conducted to determine mathematical stiffness constants, i. e., C ij . An optimum specimen aspect ratio for these tests was selected by means of finite element analysis. Quasi-static and intermediate strain rate tests were conducted in a servo-hydraulic testing machine. High strain rate tests were conducted using a split Hopkinson Pressure Bar system built for the purpose using polymeric (polycarbonate) bars. The polycarbonate material has an impedance that is closer to that of foam than metals and results in lower noise to signal ratios and longer loading pulses. It was determined by analysis and verified experimentally that the loading pulses applied, propagated along the polycarbonate rods at nearly constant phase velocity with very low attenuation and dispersion. Material properties of the foam were obtained at three strain rates, quasi-static (10?4 s?1), intermediate (1 s?1), and high (103 s?1) strain rates. A simple model proposed for the Young??s modulus of the foam was in very good agreement with the present and published experimental results.  相似文献   

16.
In the present paper, the Preisach model of hysteresis is applied to model cyclic behavior of elasto-plastic material. Rate of loading and viscous effects will not be considered. The problem of axial loading of rectangular cross-section and cyclic bending of rectangular tube (box) will be studied in details. Hysteretic stress–strain loop for prescribed history of stress change is plotted for material modeled by series connection of three unite element. Also moment–curvature hysteretic loop is obtained for a prescribed curvature change of rectangular tube (box). All obtained results clearly show advantages of the Preisach model for describing cyclic behavior of elasto-plastic material.  相似文献   

17.
A numerical and experimental investigation for determining mixed-mode stress intensity factors, fracture toughness, and crack turning angle for BX-265 foam insulation material, used by NASA to insulate the external tank (ET) for the space shuttle, is presented. BX-265 foam is a type of spray-on foam insulation (SOFI), similar to the material used to insulate attics in residential construction. This cellular material is a good insulator and is very lightweight. Breakup of segments of this foam insulation on the shuttle ET impacting the shuttle thermal protection tiles during liftoff is believed to have caused the space shuttle Columbia failure during re-entry. NASA engineers are interested in understanding the processes that govern the breakup/fracture of this material from the shuttle ET. The foam is anisotropic in nature and the required stress and fracture mechanics analysis must include the effects of the direction dependence on material properties. Material testing at NASA Marshall Space Flight Center (MSFC) has indicated that the foam can be modeled as a transversely isotropic material. As a first step toward understanding the fracture mechanics of this material, we present a general theoretical and numerical framework for computing stress intensity factors (SIFs), under mixed-mode loading conditions, taking into account the material anisotropy. We present SIFs for middle tension – M(T) – test specimens, using 3D finite element stress analysis (ANSYS) and FRANC3D fracture analysis software. SIF values are presented for a range of foam material orientations. Mode I fracture toughness of the material is determined based on the SIF value at failure load. We also present crack turning angles for anisotropic foam material under mixed-mode loading. The results represent a quantitative basis for evaluating the strength and fracture properties of anisotropic foam insulation material.  相似文献   

18.
为了研究重复冲击载荷作用下泡沫金属夹芯梁的动态响应,采用Abaqus数值仿真软件,基于可压碎泡沫模型(crushable foam),建立了泡沫金属夹芯梁遭受楔形质量块冲击的有限元模型。通过将仿真获得的夹芯梁上下面板最终挠度与重复冲击实验结果进行对比,验证仿真方法的准确性。在此基础之上,分析了泡沫金属夹芯梁在楔形质量块重复冲击作用下的变形模式、加卸载过程以及能量耗散特性。结果表明,在重复冲击载荷作用下,夹芯梁的变形不断累积,上面板主要出现局部凹陷和整体弯曲,而芯层则是局部压缩,下面板表现为整体弯曲。在重复加卸载过程中,加卸载刚度随着冲击次数的增加而增大。随着冲击次数的增加,上面板和芯层的能量吸收增量不断减小,而下面板的能量吸收增量不断增加,且最终均趋于稳定。泡沫金属夹芯梁的塑性变形能增量不断减小,而回弹系数随着冲击次数逐渐增加,最后趋于稳定值。  相似文献   

19.
A phenomenological void–crack nucleation model for ductile metals with secondphases is described which is motivated from fracture mechanics and microscale physicalobservations. The void–crack nucleation model is a function of the fracture toughness of theaggregate material, length scale parameter (taken to be the average size of the second phaseparticles in the examples shown in this writing) , the volume fraction of the second phase, strainlevel, and stress state. These parameters are varied to explore their effects upon the nucleationand damage rates. Examples of correlating the void–crack nucleation model to tension data in theliterature illustrate the utility of the model for several ductile metals. Furthermore, compression,tension, and torsion experiments on a cast Al–Si–Mg alloy were conducted to determinevoid–crack nucleation rates under different loading conditions. The nucleation model was thencorrelated to the cast Al–Si–Mg data as well.  相似文献   

20.
A unified framework of constructing phenomenological constitutive models for a broad class of elasto-plastic materials exhibiting either plastical incompressibility (e.g., grey cast iron) or plastical compressibility (e.g., metal foams) is proposed. The constitutive framework also enables the different yielding behaviours under tension and compression as well as differential hardening along different loading paths to be accounted for in a relatively simple manner. The resulting plasticity model does not require the difficult task of experimentally probing the initial yield surface and its subsequent evolution; it is completely determined from a set of as few as two distinctive stress–strain curves measured along the characteristic loading paths for isotropic materials. The predicted yielding behaviours for grey cast iron and metal foams compare favourably with those measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号