首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier–Stokes (RANS) methods, but some discussion of newer methods such as large eddy simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath, including laminar-to-turbulent boundary layer transition, shock wave/turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers), and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.  相似文献   

2.
The present work extends a recently proposed P-function based model for describing the near-wall variation of temperature in forced convective turbulent flow to the case with temperature-dependent material properties. The extension essentially modifies the model formulations for describing the local variation of the turbulent mixing length and the turbulent Prandtl number. Direct Numerical Simulations (DNS) and experimental measurements are carried to provide comprehensive validation data for a wide range of Reynolds numbers, considering molecular Prandtl numbers well beyond unity. The observed good agreement of the predictions with the DNS data and experiments proves the present extended model as a well-suited approach for prescribing reliable thermal boundary conditions in Reynolds Averaged Navier-Stokes (RANS) simulations, assuming temperature-dependent material properties.  相似文献   

3.
Hybrid LES-RANS: An approach to make LES applicable at high Reynolds number   总被引:1,自引:0,他引:1  
The main bottle neck for using large eddy simulations (LES) at high Reynolds number is the requirement of very fine meshes near walls. Hybrid LES-Reynolds-averaged Navier-Stokes (RANS) was invented to get rid of this limitation. In this method, unsteady RANS (URANS) is used near walls and away from walls LES is used. The matching between URANS and LES takes place in the inner log-region. In the present paper, a method to improve standard LES-RANS is evaluated. The improvement consists of adding instantaneous turbulent fluctuations (forcing conditions) at the matching plane in order to provide the equations in the LES region with relevant turbulent structures. The fluctuations are taken from a DNS of a generic boundary layer. Simulations of fully developed channel flow and plane asymmetric diffuser flow are presented. Hybrid LES-RANS is used both with and without forcing conditions.  相似文献   

4.
We present an original timesaving joint RANS/LES approach to simulate turbulent premixed combustion. It is intended mainly for industrial applications where LES may not be practical. It is based on successive RANS/LES numerical modelling, where turbulent characteristics determined from RANS simulations are used in LES equations for estimation of the subgrid chemical source and viscosity. This approach has been developed using our TFC premixed combustion model, which is based on a generalization of the Kolmogorov’s ideas. We assume existence of small-scale statistically equilibrium structures not only of turbulence but also of the reaction zones. At the same time, non-equilibrium large-scale structures of reaction sheets and turbulent eddies are described statistically by model combustion and turbulence equations in RANS simulations or follow directly without modelling in LES. Assumption of small-scale equilibrium gives an opportunity to express the mean combustion rate (controlled by small-scale coupling of turbulence and chemistry) in the RANS and LES sub-problems in terms of integral or subgrid parameters of turbulence and the chemical time, i.e. the definition of the reaction rate is similar to that of the mean dissipation rate in turbulence models where it is expressed in terms of integral or subgrid turbulent parameters. Our approach therefore renders compatible the combustion and turbulent parts of the RANS and LES sub-problems and yields reasonable agreement between the RANS and averaged LES results. Combining RANS simulations of averaged fields with LES method (and especially coupled and acoustic codes) for simulation of corresponding nonstationary process (and unsteady combustion regimes) is a promising strategy for industrial applications. In this work we present results of simulations carried out employing the joint RANS/LES approach for three examples: High velocity premixed combustion in a channel, combustion in the shear flow behind an obstacle and the impinging flame (a premixed flame attached to an obstacle).  相似文献   

5.
A synthetic turbulence generation (STG) method for subsonic and supersonic flows at low and moderate Reynolds numbers to provide inflow distributions of zonal Reynolds-averaged Navier–Stokes (RANS) – large-eddy simulation (LES) methods is presented. The STG method splits the LES inflow region into three planes where a local velocity signal is decomposed from the turbulent flow properties of the upstream RANS solution. Based on the wall-normal position and the local flow Reynolds number, specific length and velocity scales with different vorticity content are imposed at the inlet plane of the boundary layer. The quality of the STG method for incompressible and compressible zero-pressure gradient boundary layers is shown by comparing the zonal RANS–LES data with pure LES, pure RANS, and direct numerical simulation (DNS) solutions. The distributions of the time and spanwise wall-shear stress, Reynolds stress distributions, and two point correlations of the zonal RANS–LES simulations are smooth in the transition region and in good agreement with the pure LES and reference DNS findings. The STG approach reduces the RANS-to-LES transition length to less than four boundary-layer thicknesses.  相似文献   

6.
Direct numerical and large eddy simulation (DNS and LES) are applied to study passive scalar mixing and intermittency in turbulent round jets. Both simulation techniques are applied to the case of a low Reynolds number jet with Re = 2,400, whilst LES is also used to predict a high Re = 68,000 flow. Comparison between time-averaged results for the scalar field of the low Re case demonstrate reasonable agreement between the DNS and LES, and with experimental data and the predictions of other authors. Scalar probability density functions (pdfs) for this jet derived from the simulations are also in reasonable accord, although the DNS results demonstrate the more rapid influence of scalar intermittency with radial distance in the jet. This is reflected in derived intermittency profiles, with LES generally giving profiles that are too broad compared to equivalent DNS results, with too low a rate of decay with radial distance. In contrast, good agreement is in general found between LES predictions and experimental data for the mixing field, scalar pdfs and external intermittency in the high Reynolds number jet. Overall, the work described indicates that improved sub-grid scale modelling for use with LES may be beneficial in improving the accuracy of external intermittency predictions by this technique over the wide range of Reynolds numbers of practical interest.  相似文献   

7.
A direct numerical simulation of turbulent channel flow with an imposed mean scalar gradient is analyzed with a focus on passive scalar flux modelling and in particular the treatment of the passive scalar dissipation equation. The Prandtl number is 0.71 and the Reynolds number based on the wall friction velocity and the channel half width is 265. Budgets are presented for the passive scalar variance and its dissipation rate, as well as for the individual scalar flux components. These form a basis for a discussion of modelling issues related to explicit algebraic scalar flux modelling. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The present paper tests the capability of a standard Reynolds-Averaged Navier–Stokes (RANS) turbulence model for predicting the turbulent heat transfer in a generic trailing-edge situation with a cutback on the pressure side of the blade. The model investigated uses a gradient-diffusion assumption with a scalar turbulent-diffusivity and constant turbulent Prandtl number. High-fidelity Large-Eddy Simulations (LES) were performed for three blowing ratios to provide reliable target data and the mean velocity and eddy viscosity as input for the heat transfer model testing. Reasonably good agreement between the LES and recent experiments was achieved for mean flow and turbulence statistics. The LES yielded coherent structures which were analysed, in particular with respect to their effect on the turbulent heat transfer. For increasing blowing ratio, the LES replicated an also experimentally observed counter-intuitive decrease of the cooling effectiveness caused by the coherent structures becoming stronger. In contrast, the RANS turbulent heat transfer model failed in predicting this behaviour and yielded significantly too high cooling effectiveness. It is shown that the model cannot predict the strong upstream and wall-directed turbulent heat fluxes caused by large coherent structures, which were found to be responsible for the counter-intuitive decrease of the cooling effectiveness.  相似文献   

9.
A key limitation of Reynolds-Average Navier-Stokes (RANS) simulation of mixing and reaction in turbulent flows is the lack of resolution of small-scale structure and associated unsteadiness. Various subgrid models formulated in state space have been developed to complement the RANS solution in this regard. We here introduce a physical-space formulation that captures unsteady advective and diffusive processes at all scales of the turbulent flow. The approach is a 3D construction based on the Linear Eddy Model (LEM), involving three orthogonally intersecting arrays of 1D LEM domains, and coupled so as to capture the 3D character of fluid trajectories. To illustrate the model performance of the 3D LEM-based formulation, here termed LEM3D, multi-stream mixing in a turbulent round jet is simulated using measured mean-flow properties as input. Comparison to scalar cross-correlation coefficients and other measured properties of this mixing configuration indicate that the LEM3D approach, in conjunction with flow properties that are provided by steady-state models, is a useful representation of complex turbulent mixing processes that would otherwise be difficult to capture within a steady-state CFD framework.  相似文献   

10.
11.
利用处理三维可压缩粘性流体流动问题中的沉浸边界法,并结合基于PPM方法的高精度TVD格式,对三维方形管道中部的圆柱火焰绕流及惰性气体绕流问题进行了数值模拟。计算湍流时采用大涡模拟(LES),化学反应速率采用EBU漩涡破碎模型。通过计算结果与实验结果的比较,发现高精度PPM格式能精确模拟两类圆柱绕流问题。计算中还发现,火焰圆柱绕流算例中,在火焰翻越圆柱前,由于燃烧的膨胀作用,使得火焰正面前的未燃气体流动并形成惰性气体绕流,这与无燃烧时的惰性气体绕流类似。但当火焰翻越圆柱过程中及完全翻越圆柱后,两种算例绕流流场出现明显变化。  相似文献   

12.
细颗粒泥沙净冲刷和输移的大涡模拟研究   总被引:1,自引:1,他引:0  
在传统水沙输移数值模拟研究中一般采用雷诺时均模拟技术(Reynolds-averaged simulation,RANS).与RANS相比,大涡模拟技术(large eddy simulation,LES)能够更加精确反映细部流动结构,计算机的发展使得采用LES探讨水流和泥沙运动规律成为可能.本文尝试给出净冲刷条件下悬沙计算的边界条件,采用动态亚格子模式对循环槽道和长槽道中的水流运动和泥沙输移进行了三维大涡模拟研究.利用直接数值模拟(direct numerical simulation,DNS)结果对LES模型进行了率定,计算结果符合良好,在此基础上初步探讨了泥沙浓度、湍动强度和湍动通量等的分布特征.结果表明,净冲刷条件下输沙平衡时泥沙浓度符合Rouse公式分布,单向流动中泥沙浓度沿着流向逐渐增大.泥沙浓度湍动强度和湍动通量都在近底部达到最大值,沿着垂向迅速减小.湍动黏性系数和扩散系数基本上在水深中间处达到最大.湍动Schmidt数沿着水深方向不是常数,在近底部和自由水面附近较大,在水深中间处较小.  相似文献   

13.
采用直接数值模拟的方法,研究分子Pг数对湍流被动标量输运的影响,并提供充分的证据证明,湍流Pг数明显依赖于分子Pг数.在算例中,湍流雷诺平均PгT数与分子Pг数的倒数呈线性关系;湍流亚格子Pгt数与分子Pг数的关系较为复杂,在分子Pг数为1附近时,湍流亚格子Pгt数出现极小值.  相似文献   

14.
将两方程k-ω SST湍流模型和Sagaut的混合尺度亚格子模型通过一个混合函数相结合, 构造出一种混合大涡/雷诺平均N-S方程模拟方法(hybird large eddy simulation/reynolds-averaged navier-stokes, Hybrid LES/RANS), 采用这种混合模拟方法结合5阶WENO格式对Ma=2.8平板湍流边界层进行了数值模拟, 并在计算区域上游入口处采用“回收/调节”方法生成湍流脉动边界条件, 通过考查RANS区域向LES区域的过渡参数及网格分辨率对这种混合模拟方法进行了评价. 计算结果表明: 该文采用的混合模拟方法可以捕捉到湍流边界层中的大尺度结构且入口边界层平均参数不会发生漂移, 混合函数应当将RANS区域和LES区域的过渡点设置在对数律层和尾迹律层的交界处, 而过渡应当迅速以获得正确的雷诺剪切应力分布, 在该文采用的模型及数值方法的条件下, 流向及展向的网格小至与Escudier混合长相当时, 能够获得可以接受的脉动速度的单点-二阶统计值.  相似文献   

15.
Role of the smallest diffusive scales of a passive scalar field in the near-wall turbulent flow was examined with pseudo-spectral numerical simulations. Temperature fields were analyzed at friction Reynolds number Re τ=171 and at Prandtl numbers, Pr=1 and Pr=5.4. Results of direct numerical simulations (DNS) were compared with the under-resolved simulations where the velocity field was still resolved with the DNS accuracy, while a coarser grid was used to describe the temperature fields. Since the smallest temperature scales remained unresolved in these simulations, an appropriate spectral turbulent thermal diffusivity was applied to avoid pile-up at the higher wave numbers. In spite of coarser numerical grids, the temperature fields are still highly correlated with the DNS results, including instantaneous temperature fields. Results point to practically negligible role of the diffusive temperature scales on the macroscopic behavior of the turbulent heat transfer.  相似文献   

16.
We present a novel approach to hybrid Reynolds-averaged Navier-Stokes (RANS)/ large eddy simulation (LES) wall modeling based on function enrichment, which overcomes the common problem of the RANS-LES transition and enables coarse meshes near the boundary. While the concept of function enrichment as an efficient discretization technique for turbulent boundary layers has been proposed in an earlier article by Krank & Wall (A new approach to wall modeling in LES of incompressible flow via function enrichment. J Comput Phys. 2016;316:94-116), the contribution of this work is a rigorous derivation of a new multiscale turbulence modeling approach and a corresponding discontinuous Galerkin discretization scheme. In the near-wall area, the Navier-Stokes equations are explicitly solved for an LES and a RANS component in one single equation. This is done by providing the Galerkin method with an independent set of shape functions for each of these two methods; the standard high-order polynomial basis resolves turbulent eddies, where the mesh is sufficiently fine and the enrichment automatically computes the ensemble-averaged flow if the LES mesh is too coarse. As a result of the derivation, the RANS model is applied solely to the RANS degrees of freedom, which effectively prevents the typical issue of a log-layer mismatch in attached boundary layers. As the full Navier-Stokes equations are solved in the boundary layer, spatial refinement gradually yields wall-resolved LES with exact boundary conditions. Numerical tests show the outstanding characteristics of the wall model regarding grid independence, superiority compared to equilibrium wall models in separated flows, and achieve a speed-up by two orders of magnitude compared to wall-resolved LES.  相似文献   

17.
18.
Among the various hybrid methodologies, Speziale's very large eddy simulation (VLES) is one that was proposed very early. It is a unified simulation approach that can change seamlessly from Reynolds Averaged Navier–Stokes (RANS) to direct numerical simulation (DNS) depending on the numerical resolution. The present study proposes a new improved variant of the original VLES model. The advantages are achieved in two ways: (i) RANS simulation can be recovered near the wall which is similar to the detached eddy simulation concept; (ii) a LES subgrid scale model can be reached by the introduction of a third length scale, that is, the integral turbulence length scale. Thus, the new model can provide a proper LES mode between the RANS and DNS limits. This new methodology is implemented in the standard k ? ? model. Applications are conducted for the turbulent channel flow at Reynolds number of Reτ = 395, periodic hill flow at Re = 10,595, and turbulent flow past a square cylinder at Re = 22,000. In comparison with the available experimental data, DNS or LES, the new VLES model produces better predictions than the original VLES model. Furthermore, it is demonstrated that the new method is quite efficient in resolving the large flow structures and can give satisfactory predictions on a coarse mesh. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The finite volume method with exact two‐phase Riemann problems (FIVER) is a two‐faceted computational method for compressible multi‐material (fluid–fluid, fluid–structure, and multi‐fluid–structure) problems characterized by large density jumps, and/or highly nonlinear structural motions and deformations. For compressible multi‐phase flow problems, FIVER is a Godunov‐type discretization scheme characterized by the construction and solution at the material interfaces of local, exact, two‐phase Riemann problems. For compressible fluid–structure interaction (FSI) problems, it is an embedded boundary method for computational fluid dynamics (CFD) capable of handling large structural deformations and topological changes. Originally developed for inviscid multi‐material computations on nonbody‐fitted structured and unstructured grids, FIVER is extended in this paper to laminar and turbulent viscous flow and FSI problems. To this effect, it is equipped with carefully designed extrapolation schemes for populating the ghost fluid values needed for the construction, in the vicinity of the fluid–structure interface, of second‐order spatial approximations of the viscous fluxes and source terms associated with Reynolds averaged Navier–Stokes (RANS)‐based turbulence models and large eddy simulation (LES). Two support algorithms, which pertain to the application of any embedded boundary method for CFD to the robust, accurate, and fast solution of FSI problems, are also presented in this paper. The first one focuses on the fast computation of the time‐dependent distance to the wall because it is required by many RANS‐based turbulence models. The second algorithm addresses the robust and accurate computation of the flow‐induced forces and moments on embedded discrete surfaces, and their finite element representations when these surfaces are flexible. Equipped with these two auxiliary algorithms, the extension of FIVER to viscous flow and FSI problems is first verified with the LES of a turbulent flow past an immobile prolate spheroid, and the computation of a series of unsteady laminar flows past two counter‐rotating cylinders. Then, its potential for the solution of complex, turbulent, and flexible FSI problems is also demonstrated with the simulation, using the Spalart–Allmaras turbulence model, of the vertical tail buffeting of an F/A‐18 aircraft configuration and the comparison of the obtained numerical results with flight test data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This work presents developments to a novel evolutionary framework that symbolically regresses algebraic forms of the Reynolds stress anisotropy tensor. This work contributes to the growing trend in machine-learning for modelling physical phenomena. Our framework is shown to be computational inexpensive and produce accurate and robust models that are tangible mathematical expressions. This transparency in the result allows us to diagnose issues with the regressed formulae and appropriately make amendments, as we further understand the regression tools. Such models are created using hybrid RANS/LES flow field data and a passive solving of the RANS transport equations to obtain the modelled time scale. This process shows that models can be regressed from a qualitatively correct flow field and fully resolved DNS is not necessarily required. Models are trained and tested using rectangular ducts, an example flow genus that linear RANS models even qualitatively fail to predict correctly. A priori and a posteriori testing of the new models show that the framework is a viable methodology for RANS closure development. This a posteriori agenda includes testing on an asymmetric diffuser, for which the new models vastly outperform the baseline linear model. Therefore this study presents one of the most rigorous and complete CFD validation of machine learnt turbulent stress models to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号