首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer
Authors:Y Wang  M Tanahashi  T Miyauchi
Institution:

aDepartment of Mechanical and Aerospace Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Abstract:To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar–turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Reω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (uk), and decreases to 1.2uk, which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and greek small letter alpha:β:γ = −5:1:4 in the transition process. In addition to Kelvin–Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow.
Keywords:Laminar–turbulent transition  Turbulent mixing layer  Direct numerical simulation  Coherent fine scale eddy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号