首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the nonlinear equations of motion for shallow spherical shells with axisymmetric deformation including transverse shear are derived. The nonlinear static and dynamic response and dynamic buckling of shallow spherical shells with circular hole on elastically restrained edge are investigated. By using the orthogonal point collocation method for space and Newmark-β scheme for time, the displacement functions are separated and the nonlinear differential equations are replaced by linear algebraic equations to seek solutions. The numerical results are presented for different cases and compared with available data.  相似文献   

2.
IntroductionTheporousmediamodelsdeducedfrommixturetheoryareattractingattentionofmoreandmoreresearchersbecauseitisbasedontheframeofcontinuummechanics[1]andweresuccessfullyusedtodepictthemechanicalbehaviorsofsoilsandbiologicalsofttissues[2 ,3].Withthistypeo…  相似文献   

3.
基于精细积分技术的非线性动力学方程的同伦摄动法   总被引:2,自引:0,他引:2  
将精细积分技术(PIM)和同伦摄动方法(HPM)相结合,给出了一种求解非线性动力学方程的新的渐近数值方法。采用精细积分法求解非线性问题时,需要将非线性项对时间参数按Taylor级数展开,在展开项少时,计算精度对时间步长敏感;随着展开项的增加,计算格式会变得越来越复杂。采用同伦摄动法,则具有相对筒单的计算格式,但计算精度较差,应用范围也限于低维非线性微分方程。将这两种方法相结合得到的新的渐近数值方法则同时具备了两者的优点,既使同伦摄动方法的应用范围推广到高维非线性动力学方程的求解,又使精细积分方法在求解非线性问题时具有较简单的计算格式。数值算例表明,该方法具有较高的数值精度和计算效率。  相似文献   

4.
Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work. With the reservation of the axial nonlinear strain, there are more coupling terms for axial and transverse deformations. The discretized dynamic governing equations are obtained by using the finite element method and Lagrange’s equations of the second kind. Time responses are conducted to compare the proposed model with other previous models. The stretching deforma...  相似文献   

5.
The present work discusses the problem of dynamic stability of a viscoelas- tic circular cylindrical shell,according to revised Timoshenko theory,with an account of shear deformation and rotatory inertia in the geometrically nonlinear statement.Pro- ceeding by Bubnov-Galerkin method in combination with a numerical method based on the quadrature formula the problem is reduced to a solution of a system of nonlinear integro-differential equations with singular kernel of relaxation.For a wide range of vari- ation of physical mechanical and geometrical parameters,the dynamic behavior of the shell is studied.The influence of viscoelastic properties of the material on the dynamical stability of the circular cylindrical shell is shown.Results obtained using different theories are compared.  相似文献   

6.
研究了具有非线性homologous变形约束条件的桁架结构形态分析问题。在已有的线性homologous变形约束桁架形态分析的基础上,将结构的节点分成三类:homologous变形约束节点,形状可变节点和边界点。运用Moore-Penrose广义逆矩阵性质,将基础方程组解的存在条件表示为包含形状可变节点未知坐标的非线性方程组,为采用Newton-Raphson方法求解非线性方程组,对AA (A为任意矩阵,A 为A的Moore-Penrose广义逆矩阵)求偏导数,找到了满足保型要求的形态,给出的桁架算例说明了本文方法的有效性。  相似文献   

7.
In this work, a thorough investigation is presented into the nonlinear resonant dynamics of geometrically imperfect shear deformable nanobeams subjected to harmonic external excitation force in the transverse direction. To this end, the Gurtin–Murdoch surface elasticity theory together with Reddy’s third-order shear deformation beam theory is utilized to take into account the size-dependent behavior of nanobeams and the effects of transverse shear deformation and rotary inertia, respectively. The kinematic nonlinearity is considered using the von Kármán kinematic hypothesis. The geometric imperfection as a slight curvature is assumed as the mode shape associated with the first vibration mode. The weak form of geometrically nonlinear governing equations of motion is derived using the variational differential quadrature (VDQ) technique and Lagrange equations. Then, a multistep numerical scheme is employed to solve the obtained governing equations in order to study the nonlinear frequency–response and force–response curves of nanobeams. Comprehensive studies into the effects of initial imperfection and boundary condition as well as geometric parameters on the nonlinear dynamic characteristics of imperfect shear deformable nanobeams are carried out through numerical results. Finally, the importance of incorporating the surface stress effects via the Gurtin–Murdoch elasticity theory, is emphasized by comparing the nonlinear dynamic responses of the nanobeams with different thicknesses.  相似文献   

8.
The present paper investigates the dynamic response of finite Timoshenko beams resting on a sixparameter foundation subjected to a moving load. It is for the first time that the Galerkin method and its convergence are studied for the response of a Timoshenko beam supported by a nonlinear foundation. The nonlinear Pasternak foundation is assumed to be cubic. Therefore, the efects of the shear deformable beams and the shear deformation of foundations are considered at the same time. The Galerkin method is utilized for discretizing the nonlinear partial differential governing equations of the forced vibration. The dynamic responses of Timoshenko beams are determined via the fourth-order Runge–Kutta method. Moreover, the efects of diferent truncation terms on the dynamic responses of a Timoshenko beam resting on a complex foundation are discussed. The numerical investigations shows that the dynamic response of Timoshenko beams supported by elastic foundations needs super high-order modes. Furthermore, the system parameters are compared to determine the dependence of the convergences of the Galerkin method.  相似文献   

9.
W. Zhang  W. L. Hao 《Nonlinear dynamics》2013,73(1-2):1005-1033
Global bifurcations and multi-pulse chaotic dynamics are studied for a four-edge simply supported composite laminated piezoelectric rectangular plate under combined in-plane, transverse, and dynamic electrical excitations. Based on the von Karman type equations for the geometric nonlinearity and Reddy’s third-order shear deformation theory, the governing equations of motion for a composite laminated piezoelectric rectangular plate are derived. The Galerkin method is employed to discretize the partial differential equations of motion to a three-degree-of-freedom nonlinear system. The six-dimensional non-autonomous nonlinear system is simplified to a three-order standard form by using the method of normal form. The extended Melnikov method is improved to investigate the six-dimensional non-autonomous nonlinear dynamical system in mixed coordinate. The global bifurcations and multi-pulse chaotic dynamics of the composite laminated piezoelectric rectangular plate are studied by using the improved extended Melnikov method. The multi-pulse chaotic motions of the system are found by using numerical simulation, which further verifies the result of theoretical analysis.  相似文献   

10.
李根国  朱正佑 《力学季刊》2001,22(3):346-351
本文讨论了有限变形粘弹性Timoshenko梁的动力学行为。首先由Timoshenko梁的理论和分数导数型本构关系给出了梁的控制方程。其次为了便于求解,采用Galerkin方法对系统进行了简化,并比较了1阶和2阶截断系统的动力学性质,它们具有相同的定性性质,说明Galerkin方法的合理性。给出了求解包含分数积分的积分-微分方程的一种新方法,以便求解系统的长时间的解。综合利用非线性动力系统中的经典方法,揭示了梁在有限变形情况下丰富的动力学行为,并分别考察了载荷参数的材料参数对结构的动力学行为的影响。  相似文献   

11.
提出了求解非线性结构动力方程的预估校正-辛时间子域法。首先,将结构非线性动力方程转换为状态空间方程,在任一时间子域内利用改进的欧拉法对各离散时刻的状态变量值进行预估和校正。然后,将离散的非线性项用Lagrange插值多项式展开并视为外荷载,结合辛时间子域法即可求解非线性动力系统的响应。这种方法不必对状态矩阵求逆,无需计算高阶导数,计算简单,格式统一,易于编程。算例结果表明,本文方法具有较高的计算精度、效率和稳定性,是一种求解非线性结构动力方程的有效方法。  相似文献   

12.
运用柔性多体系统刚柔耦合动力学理论,研究了作大范围回转运动柔性梁的碰撞动力学问题.考虑柔性梁的横向变形,以及横向变形引起的纵向缩短项即非线性耦合变形项.采用基于Hertz接触理论及非线性阻尼理论的非线性弹簧阻尼模型来求解碰撞过程中产生的碰撞力,运用第二类拉格朗日方程建立了系统的刚柔耦合碰撞动力学方程.编制仿真软件进行动力学仿真计算,得到了碰撞力和系统动力学响应,对比分析了不同动力学模型对系统动力学响应的影响.同时研究了碰撞导致的柔性梁横向变形传播的波动特性.  相似文献   

13.
对曲边柱壳受轴向非均匀内压作用下的大转动几何非线性3-D动力学行为进行了研究.基于Nayfeh and Pai[1]非线性壳体理论,给出了考虑几何非线性的3-D混合型(含内力与位移)动力学模型.为了克服该强非线性模型难以求解的问题,依据分析获得的结构静动态变形关系,采用Lagrange方程推导建立了基于结构静态解的曲边柱壳多自由度3-D动力学方程,并对其进行了线性化与降阶处理,结合差分法获得了一套高效的求解算法.与LS-DYNA有限元结果的吻合,验证了本文方法的正确性.最后分析了单元数和计算时间步分别对有限元模型和本文方法的影响,发现求解精度随着计算时间步的减小不断提高直至趋于稳定.同时对采用本文方法获得的曲边柱壳动态变形模式的分析表明:结构动态响应与其所受内压载荷沿轴向的分布形式关系紧密,可以通过改变或者设计内压轴向分布形式来影响以及控制结构的动态变形模式,从而应用于曲边柱壳结构设计及优化的工程实际中.  相似文献   

14.
论文研究了时变速度作用下局部浸液板的组合共振动力学特性。基于Von Kármán大挠度板理论,考虑流固耦合、轴向张力、轴向时变速度等因素,建立局部浸液板的非线性动力学方程,并应用Galerkin法将进行离散,获得模态坐标上的非线性方程组。分别采用多尺度法和数值方法分析了平均速度、脉动速度、张力等参数对系统非线性动力学特性的影响。结果表明:系统发生组合共振时,展现出复杂的动力学行为;第一阶模态响应幅值远大于第二阶模态响应幅值;平均速度、脉动速度幅值对系统幅频响应曲线的影响较为显著。  相似文献   

15.

In this two-part contribution, a boundary element method is developed for the nonlinear dynamic analysis of beams of arbitrary doubly symmetric simply or multiply connected constant cross section, undergoing moderate large displacements and small deformations under general boundary conditions, taking into account the effects of shear deformation and rotary inertia. In Part I the governing equations of the aforementioned problem have been derived, leading to the formulation of five boundary value problems with respect to the transverse displacements, to the axial displacement and to two stress functions. These problems are numerically solved using the Analog Equation Method, a BEM based method. In this Part II, numerical examples are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. Thus, the results obtained from the proposed method are presented as compared with those from both analytical and numerical research efforts from the literature. More specifically, the shear deformation effect in nonlinear free vibration analysis, the influence of geometric nonlinearities in forced vibration analysis, the shear deformation effect in nonlinear forced vibration analysis, the nonlinear dynamic analysis of Timoshenko beams subjected to arbitrary axial and transverse in both directions loading, the free vibration analysis of Timoshenko beams with very flexible boundary conditions and the stability under axial loading (Mathieu problem) are presented and discussed through examples of practical interest.

  相似文献   

16.
佟莹  夏健 《计算力学学报》2022,39(1):129-134
在海洋环境载荷及集矿机牵引作用下,深海采矿柔性立管系统的动力学响应涉及几何非线性和非保守载荷的双重非线性源.基于三维固体有限变形理论建立数学模型,在完全拉格朗日格式下推导了系统运动平衡方程,针对非保守载荷的等效计算、非线性切线刚度矩阵及非线性方程的数值求解等关键问题提出了有效处理方案.根据处理方案开发了数值计算程序,并...  相似文献   

17.
李伟 《固体力学学报》2015,36(4):337-345
本文主要研究了带初始几何缺陷的功能梯度固支圆柱壳在不同体积分数下的非线性动力学行为。假定该功能梯度圆柱壳材料的组分是沿厚度的方向呈梯度几何变化的。运用经典板壳理论、von-Karman几何非线性应变位移关系以及Hamilton原理,推导出两端固支FGM圆柱壳的偏微分非线性运动控制方程。本文考虑了圆柱壳的对称模态,利用Galerkin法对上述非线性动力学方程进行截断,得到常微分形式的非线性动力学方程。主要运用Runge-Kutta法进行数值仿真,并且画出了其最大lyapunov指数图,主要研究了面内载荷对振动响应的影响,并对比了不同体积分数对系统非线性动力学的影响。  相似文献   

18.

In this two-part contribution, a boundary element method is developed for the nonlinear dynamic analysis of beams of arbitrary doubly symmetric simply or multiply connected constant cross section, undergoing moderate large displacements and small deformations under general boundary conditions, taking into account the effects of shear deformation and rotary inertia. Part I is devoted to the theoretical developments and their numerical implementation and Part II discusses analytical and numerical results obtained from both analytical or numerical research efforts from the literature and the proposed method. The beam is subjected to the combined action of arbitrarily distributed or concentrated transverse loading and bending moments in both directions as well as to axial loading. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, to the axial displacement and to two stress functions and solved using the Analog Equation Method, a BEM based method. Application of the boundary element technique yields a nonlinear coupled system of equations of motion. The solution of this system is accomplished iteratively by employing the average acceleration method in combination with the modified Newton–Raphson method. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. The proposed model takes into account the coupling effects of bending and shear deformations along the member, as well as the shear forces along the span induced by the applied axial loading.

  相似文献   

19.
The flow and deformation processes in swelling porous media are modeled for absorbent hygiene products (e.g., diapers, wipes, papers etc.). The first part of the article derives the fundamental equations for the hysteretic unsaturated flow, liquid absorption, and large deformation. The final set of model equations consists of balance equations of mobile and absorbed (immobile) liquid combined with a series of constitutive relationships. The resulting equation system is strongly nonlinear and requires advanced numerical strategies for solving. The second part of the article focuses on numerical solution and presents simulation results for 2D and 3D applications.  相似文献   

20.
Dynamic analysis of a high-speed rotor bearing systems is challenged by their highly nonlinear and complex properties. Hence, an approximate response surface method (RSM) is utilized to analyze the effects of design and operating parameters on the vibration signature of a rotor-bearing system. This paper focuses on accurate performance prediction, which is essential to the design of high performance rotor bearing system. It considers distributed defects such as internal radial clearance and surface waviness of the bearing components. In the mathematical formulation the contacts between the rolling elements and the races are considered as nonlinear springs, whose stiffnesses are obtained by using Hertzian elastic contact deformation theory. The governing differential equations of motion are obtained by using Lagrange's equations. In terms of the feature that the nonlinear bearing forces act on the system, a reduction method and corresponding integration technique is used to increase the numerical stability and decrease computer time for system analysis. Parameters effects are analyzed together and its influence considered with DOE and Surface Response Methodology are used to predict dynamic response of a rotor-bearing system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号