首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对执行器发生部分失效故障的漂浮基空间机器人系统,提出了一种自适应H分散容错控制算法。利用拉格朗日第二类方程建立了系统的动力学模型。根据分散原理将系统分解为以基座或臂杆为单元的多个子系统,并将表示执行器控制能力的有效因子融入到每个子系统,使得单个子系统的执行器故障不会影响相邻执行器的正常运行。通过对每个故障子系统设计形式一致的自适应容错算法实现对整个系统的容错控制。仿真结果表明,与现有某非奇异终端滑模容错算法相比,本文算法具有更快的跟踪速度和更高的跟踪精度。  相似文献   

2.
针对关节执行器发生部分失效故障的双臂空间机器人系统的控制问题,设计了一种基于状态观测器的自适应分散神经网络容错控制器。结合拉格朗日第二类方法建立了空间机器人系统的动力学方程。根据分散理论将空间机器人执行器故障的容错问题转化为参数不确定的非线性交联系统的自适应控制问题。利用状态观测器得到了系统的角速度信号,通过自适应分散神经网络对系统的不确定项与交联项进行估计。基于Lyapunov函数法给出了观测器与控制器的稳定性判据。数值仿真表明,无论执行器是否发生故障,该控制器均可以在2 s内实现高精度的轨迹跟踪控制,且观测器均能精准地估计关节的实际角速度信号,从而验证了理论分析的正确性与算法的可行性。  相似文献   

3.
针对存在执行器故障、转动惯量偏差以及外部扰动等系统不确定性的航天器姿态跟踪问题,提出一种有限时间自适应容错姿态控制方法。建立基于四元数的航天器姿态动力学模型、执行器故障模型和系统不确定性模型,并将执行器故障分为乘性故障和加性故障两大类;利用滑模控制和有限时间控制理论设计有限时间姿态控制器,并通过设计自适应变量及更新方法对执行器故障以及系统不确定性引起的控制偏差上界进行估计和补偿,使姿态控制器对故障和扰动具有良好的适应性和鲁棒性。得到的新型有限时间自适应容错姿态控制器能够保证航天器在执行器故障以及系统不确定性条件下在有限时间内精确收敛到期望值。利用Lyapunov稳定性理论证明了系统的渐进稳定性和有限时间稳定性,数值仿真验证了所提出方法的可行性和有效性。  相似文献   

4.
针对高速列车受到执行器故障、输出幅值和变化率饱和等执行器性能约束,模型参数不确定性, 以及附加阻力干扰等影响下的跟踪控制问题,设计了一种鲁棒容错跟踪控制算法。首先,基于双曲正 切函数构造的辅助系统,构建了高速列车的增广速度跟踪控制模型;其次,为避免控制器中出现虚拟 控制信号的一阶导数,采用动态面方法并结合自适应控制技术,设计了高速列车的容错跟踪控制器, 基于 Lyapunov 函数对控制器的稳定性进行了分析;最后,对设计的容错跟踪控制算法进行了仿真验 证。仿真结果表明,控制输入及其变化率均满足所设置饱和约束的要求;列车运行中的暂态速度和位 移跟踪误差分别在 0.016 m/s 和 0.003 m 范围内,从而验证了所设计控制器的良好容错跟踪性能。  相似文献   

5.
针对空间连续型机器人系统三臂节执行器并发故障的问题,提出一种自适应鲁棒容错控制算法.采用非奇异快速终端滑模控制器,并通过自适应RBF(Radial Basis Function)神经网络在线调整控制器的切换项增益,使控制器在模型参数摄动和外部干扰下依旧具有较高的跟踪精度和较强的鲁棒性.基于Lyapunov稳定性理论,证明了该控制器可以保证整个系统的渐进稳定性.仿真结果验证了本文算法的有效性.  相似文献   

6.
针对具有状态时变时滞、系统不确定性、可建模扰动、运行噪声和执行器故障的卫星姿态控制系统,提出一种基于扰动观测器的自适应有限时间复合主动容错控制策略。针对可建模扰动设计扰动观测器,然后基于扰动估计误差设计了主动容错控制器。该时滞依赖控制器包含反馈控制项、扰动补偿项和快速自适应故障补偿项。提出的容错控制策略不仅保证闭环系统动态方程的有限时间有界性,而且保证闭环测量输出对于系统不确定性、运行噪声、执行器故障等的鲁棒性。给出控制器增益限制矩阵存在的充分条件及其线性矩阵不等式形式,进而给出仿真算例。仿真结果表明,基于扰动观测器方法,设计的自适应有限时间容错控制器能够快速估计可建模扰动,进而有效地实现系统的闭环容错控制。相较于基于非复合的自适应有限容错控制器,提出的方法对于状态变量的估计均方根误差分别降低了28.9%、4.7%和36.0%;对于可建模扰动估计的均方根误差降低了38.8%。仿真验证了所提方法的有效性。  相似文献   

7.
一种基于特征值分解的自适应信息融合滤波算法   总被引:6,自引:1,他引:5  
基于分散滤波理论的联合滤波算法,可以有效地降低组合导航系统的计算负担,并且增强系统的容错性能。本文给出了一种联合滤波算法中信息分配系数的自适应计算方法,能够使联合系统根据导航过程中各传感器的信息质量的变化合理地反馈全局信息。仿真结果表明该算法可以有效地降低由于导航子系统降级带来的滤波误差。  相似文献   

8.
针对常规卡尔曼滤波在组合导航中容错性不足的问题,提出了一种基于遗传模糊推理的自适应容错滤波算法。首先建立了基于模糊推理的自适应滤波模型,利用模糊推理系统的输出对组合导航系统的量测噪声实时进行调整,以实现状态的精确估计,进而达到容错目的。接着利用自适应遗传算法对模糊推理系统的隶属度函数参数进行了优化,提高了系统的输出精度,改进了传统模糊建模中系统精度取决于专家知识是否完备的问题。最后以SINS/GPS组合导航系统为平台进行了仿真,并在系统工作中间时刻引入量测噪声故障。验证结果表明遗传模糊推理自适应滤波算法比常规卡尔曼滤波具有更强的容错能力和总体精度,在仿真中,平均位置和速度均方根误差分别降低了20.87%和41.94%。  相似文献   

9.
针对GNSS/SINS/摄影测量组合导航中某个子系统发生故障时,整个导航系统易受到故障数据污染的问题,提出了一种基于快速强跟踪AUKF的双状态卡方(Χ~2)检测数据融合方法。首先,采用快速强跟踪AUKF算法进行滤波;然后,引入卡方检验通过检测UKF子滤波器输出的状态向量来定位故障参数;最后,采用强跟踪滤波准确跟踪状态矢量突变以增强系统鲁棒性,并根据自适应因子实时调整预测协方差阵以修正增益矩阵,使滤波结果不受异常信息的干扰。将提出的改进算法与常规算法分别应用于无人机着陆导航系统,结果显示:与传统UKF相比,提出的算法得到的位置误差减少了62.6%以上;与强跟踪UKF相比,导航误差也至少减小了32.6%。  相似文献   

10.
容错分散滤波系统的设计   总被引:1,自引:0,他引:1  
本文针对具有多个子系统的大系统,提出一种容错分级分散滤波器的设计方法。首先研究了多传感器滤波问题,讨论了具有两个和多个子系统的局部滤波器状态估计值的最优合成方法。接着将这种设计方法推广到子系统和全局系统不一样的情形。文中提出的方法可用于容错组合导航系统的设计。  相似文献   

11.
一种重力辅助导航系统故障诊断与容错方法   总被引:1,自引:0,他引:1  
为了解决重力辅助导航系统软故障检测上的不足,针对重力辅助导航系统的特点和不同故障的性质,提出了一种新的重力辅助导航联邦滤波容错算法,该算法将系统的残差和方差组成故障检测函数的阈值,使阁值包含了联邦滤波全局信息和子系统特征信息,并将传统故障诊断算法对故障的检测改为对滤波收敛性的检测,根据联邦滤波全局收敛信息的不同,动态确定故障诊断函数.通过惯导/计程仪/重力组合导航系统的仿真试验,证明了该方法具有较强的故障诊断能力,有效改善了重力辅助导航系统对软故障检测失效带来的滤波发散定位错误的问题,抑制了重力故障给组合导航系统带来的误差,明显提高了重力辅助导航系统的精度和容错性能.  相似文献   

12.
针对重复使用运载器(RLV)等类飞行器存在外界干扰和执行机构故障等情况,提出一种基于姿态跟踪容错控制方法。在正常的运行模式下,姿态跟踪控制采用连续四元数反馈控制器。当系统中出现故障时,飞行器姿态将偏离参考轨迹,此时触发控制系统中滑动模态反应,使系统具有鲁棒性。通过选取适当李雅普诺夫函数,证明了所提出的控制律在存在故障的情况下是渐近稳定的。针对由于传感器干扰滑模面非零而导致的增益渐增,以及控制器性能下降问题,设计了一种具有自适应参数的自适应滑模控制律,使增益能够收敛到合理上界。最后,选取重复使用运载器再入段为对象进行仿真验证。仿真结果表明,采用有自适应滑模参数的控制系统,四元数跟踪误差能够达到10~(-4)量级。  相似文献   

13.
讨论了关节柔性且系统参数不确定的漂浮基空间机器人系统的动力学建模过程、运动轨迹跟踪控制算法设计及系统柔性振动的主动抑制问题。利用系统动量、动量矩守恒关系和拉格朗日法对系统动力学进行分析,并建立系统动力学方程。基于奇异摄动法将系统分解为表示系统刚性运动部分的慢变子系统和表示系统柔性运动部分的快变子系统。针对慢变子系统提出了一种自适应滑模控制算法。该控制算法是由基于滑模面的等效控制项、自适应控制项和PID反馈控制项组成。因此,它集合了滑模控制、自适应算法和PID技术的优点,且弥补了三种算法各自的缺点。该控制算法能够有效地补偿系统的转动误差和不确定参数,提高控制系统的精度。针对快变子系统,提出基于速度差值的反馈控制算法来抑制柔性关节引起的系统柔性振动,保证系统的稳定性。最后,通过仿真实验证明了提出的混合控制算法的有效性。  相似文献   

14.
为提高自主水下航行器的导航精度,比较目前 AUV 常用的水下导航方式,将捷联式惯性导航系统与地球物理导航系统相结合构成水下无源组合导航系统.采用容错联邦卡尔曼滤波对各子系统信息进行故障诊断、系统重构和融合.针对传统的2c检验法不能确定故障具体原因,而仅能判断量测信息是否有效的缺陷,提出利用神经网络辅助2c检验法进行故障诊断.通过对水下组合导航系统算法进行仿真分析,结果表明该算法能够快速、准确地判断系统故障源,通过故障隔离和系统重构,使系统在故障情况下依然保持正常工作.  相似文献   

15.
在广义系统故障诊断过程中,若系统动态模型中存在不确定性,传统的无迹卡尔曼滤波算法将失去其传感器故障估计精度。为解决该问题,提出一种改进的强跟踪卡尔曼滤波算法以实现广义连续-离散系统的传感器故障诊断及隔离。首先,提出基于多重渐消因子的强跟踪滤波算法以实现动态模型存在不确定性广义连续-离散系统的故障诊断;然后提出一种结合多模型自适应估计的强跟踪卡尔曼滤波(STUKFMMAE)算法以实现传感器故障的有效隔离。最后,针对基于广义连续-离散系统的惯性传感器故障模型提出仿真算例。仿真数据表明,传统无迹卡尔曼滤波对于传感器故障估计误差为0.002左右,而提出的基于多重渐消因子的强跟踪滤波算法对于传感器故障估计误差最大值为未超过4×10~(-4),且STUKFMMAE相较于UKFMMAE算法具有更好的隔离效果。仿真结果验证了设计方案的有效性。  相似文献   

16.
针对传统空中修正算法在基准信息出现故障时,空中修正精度严重下降的问题,提出了一种新的基于安全窗口χ^2检验的捷联惯导系统容错空中修正算法,通过推导给出了残差χ^2检验法的故障检测函数公式,基于该函数设计了故障诊断方案和容错策略,实现了基准信息的故障检测、隔离以及捷联惯导系统容错空中修正,并通过设置安全窗口,有效降低了容错空中修正算法的误警率,提高了算法的鲁棒性。对该容错空中修正算法进行了理论分析、仿真试验验证以及车载和机载试验考核,结果表明基于安全窗口χ^2检验的捷联惯导容错空中修正算法是可行和有效的,性能优于传统空中修正算法,可以有效减小故障对空中修正精度的影响,提高了空中修正的精度和可靠性。  相似文献   

17.
为满足复杂的环境下战术导弹导航系统的高可靠性导航的要求,对战术导弹的多传感器组合导航进行了研究.提出了一种基于新型自适应联邦卡尔曼滤波的巡航导弹SINS/GPS/EC组合导航方法,根据联邦滤波的分散滤波结构,分别建立了各滤波器的模型,进行了仿真试验验证.仿真结果表明,采用新型自适应联邦卡尔曼滤波算法的导航精度比采用集中卡尔曼滤波算法提高幅度不大,略高一些,但从自适应联邦卡尔曼滤波器的容错性比集中卡尔曼滤波器好得多,便于各导航子系统的故障检查和隔离.本文设计自适应联邦SINS/GPS/EC滤波器的在子系统较多的组合导航设计中具有高可靠性、低计算量、低成本和小体积等优势,具有工程应用价值.  相似文献   

18.
针对快速调姿挠性航天器的姿态控制问题,提出一种基于输入成型的自适应姿态控制方法,解决俯仰、偏航、滚转三通道的控制耦合问题,抑制航天器挠性振动、提高姿态控制精度。首先,建立了考虑弹性振动、执行器故障及惯量不确定性的挠性航天器姿态动力学模型。基于欧拉轴角提出一种姿态机动参考轨迹设计方法,避免了俯仰、偏航、滚转三通道的耦合问题。通过多模输入成型方法对姿态机动参考轨迹进行修正,以抑制航天器弹性振动。采用自适应容错控制方法对修正后的参考轨迹进行跟踪,以实现挠性航天器快速姿态机动任务。数值仿真结果表明,与传统PD姿态控制方法相比,所提出的基于输入成型的挠性航天器自适应姿态控制方法可将残余弹性振动幅值和姿态控制偏差降低两个数量级,验证了该方法的有效性。  相似文献   

19.
提出了采用自适应加权和卡尔曼滤波相结合的自适应滤波方法进行组合导航系统极故障检测的新思路。该方法不仅可以判断出故障是否出现,而且可以对故障量的值进行跟踪估计,在估计的同时可以判断故障值出现在哪一个量测通道中。SINS/GPS组合导航系统故障检测和隔离的系统仿真结果验证了本算法的有效性。  相似文献   

20.
针对基座与臂杆存在柔性且执行机构发生故障的自由漂浮空间机器人系统,设计了快速终端滑模容错抑振控制器。结合线性弹簧假设、欧拉-伯努利梁理论和假设模态法提取了系统的柔性特征,利用拉格朗日方程推导出柔性基、柔性臂空间机器人系统的动力学模型;基于双幂次非奇异快速终端滑模为系统设计了有限时间容错控制器,采用Lyapunov函数法证明了闭环系统的稳定性;在此基础上,引入混合轨迹对容错控制器进行修正,进而构造出基于虚拟控制力的有限时间容错抑振控制器,实现对空间机器人载体姿态与关节轨迹的快速跟踪控制及基座与臂杆柔性振动的有效抑制。仿真结果表明,相较于无容错机制的计算力矩抑振控制算法,所设计算法的轨迹跟踪误差收敛速度提升了68.75%,弹性基座的振幅减小了78%,限定在1.1×10-4 m之内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号