首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A formulation of a constitutive behaviour law is proposed for hyperelastic materials, such that damage induced anisotropy can be accounted for continuously. The full-network approach with directional damage is adopted as a starting point. The full-network law with elementary strain energy density based on the inverse Langevin is chosen as a reference law which is cast into the proposed framework. This continuum formalism is then rewritten using spherical harmonics to capture damage directionality. The proposed formalism allows for an efficient (and systematic) expansion of complex non-linear anisotropic constitutive laws. A low order truncated expression of the resulting behaviour is shown to reproduce accurately the stress-strain curves of the exact behaviour laws.  相似文献   

2.
The main objective of this work is the formulation and algorithmic treatment of anisotropic continuum damage mechanics at large strains. Based on the concept of a fictitious, isotropic, undamaged configuration an additional linear tangent map is introduced which allows the interpretation as a damage deformation gradient. Then, the corresponding Finger tensor – denoted as damage metric – constructs a second order, internal variable. Due to the principle of strain energy equivalence with respect to the fictitious, effective space and the standard reference configuration, the free energy function can be computed via push-forward operations within the nominal setting. Referring to the framework of standard dissipative materials, associated evolution equations are constructed which substantially affect the anisotropic nature of the damage formulation. The numerical integration of these ordinary differential equations is highlighted whereby two different schemes and higher order methods are taken into account. Finally, some numerical examples demonstrate the applicability of the proposed framework.  相似文献   

3.
Bones are able to adapt their local density when exposed to mechanical loading. Such growth processes result in densification of the bone in regions of high loading levels and in resorption of the material in regions of low loading levels. This evolution and optimisation process generates heterogeneous distributions of bone density accompanied by pronounced anisotropic mechanical properties. While several constitutive models reported in the literature assume the growth process to be purely isotropic, only few studies focus on the modelling and simulation of anisotropic functional adaptation we can observe in vivo. Some of these few computational models for anisotropic growth characterise the evolution of anisotropy by analogy to anisotropic continuum damage mechanics while others include anisotropic growth but assume isotropic elastic properties.The objective of this work is to generalise a well-established framework of energy-driven isotropic functional adaptation to anisotropic microstructural growth and density evolution. We adopt the so-called micro-sphere concept, which proves to be extremely versatile and flexible to extend sophisticated one-dimensional constitutive relations to the three-dimensional case. In this work we apply this framework to the modelling and simulation of anisotropic functional adaptation by means of a directional density distribution, which evolves in time and in response to the mechanical loading condition. Several numerical studies highlight the characteristics and properties of the anisotropic growth model we establish. The formulation is embedded into an iterative finite element algorithm to solve complex boundary value problems. In particular, we consider the finite-element-simulation of a subject-specific proximal tibia bone and a comparison to experimental measurements. The proposed model is able to appropriately represent the heterogeneous bone density distribution. As an advantage over several other computational growth models proposed in the literature, a pronounced local anisotropy evolution is identified and illustrated by means of orientation-distribution-type density plots.  相似文献   

4.
The purpose of this work is the formulation and discussion of an approach to the modelling of anisotropic elastic and inelastic material behaviour at large deformation. This is done in the framework of a thermodynamic, internal-variable-based formulation for such a behaviour. In particular, the formulation pursued here is based on a model for plastic or inelastic deformation as a transformation of local reference configuration for each material element. This represents a slight generalization of its modelling as an elastic material isomorphism pursued in earlier work, allowing one in particular to incorporate the effects of isotropic continuum damage directly into the formulation. As for the remaining deformation- and stress-like internal variables of the formulation, these are modelled in a fashion formally analogous to so-called structure tensors. On this basis, it is shown in particular that, while neither the Mandel nor back stress is generally so, the stress measure thermodynamically conjugate to the plastic “velocity gradient”, containing the difference of these two stress measures, is always symmetric with respect to the Euclidean metric, i.e., even in the case of classical or induced anisotropic elastic or inelastic material behaviour. Further, in the context of the assumption that the intermediate configuration is materially uniform, it is shown that the stress measure thermodynamically conjugate to the plastic velocity gradient is directly related to the Eshelby stress. Finally, the approach is applied to the formulation of metal plasticity with isotropic kinematic hardening.  相似文献   

5.
On the basis of the strong discontinuity analysis, a discrete model expressed in terms of traction vector-displacement jump has been constructed from a continuous model expressed in terms of stress–strain law. In the first part of the paper, this approach has been extended to a class of anisotropic continuum damage constitutive models [1]. In this second part of the paper, the proposed class of discrete anisotropic damage constitutive models is particularized. More precisely, a micromechanical-based anisotropic damage constitutive model is derived. This model accounts in a natural manner for particular crack families orientation. The aims of this paper are (i) to illustrate the capabilities of the proposed discrete enhanced model in reproducing the induced anisotropy appearing in quasi-brittle materials when cracking and (ii) to assess the numerical robustness of the time integration scheme. For this purpose, two numerical examples at the material point level are exposed after a brief presentation of the time integration scheme. The correspondence between the continuous and the discrete model as well as the induced anisotropy features are emphasized.  相似文献   

6.
To consider the anisotropic damage in fatigue, an improved boom-panel model is presented to simulate a representative volume element(RVE) in the framework of continuum damage mechanics. The anisotropic damage state of the RVE is described by the continuity extents of booms and panels, whose damage evolutions are assumed to be isotropic. The numerical implementation is proposed on the basis of damage mechanics and the finite element method. Finally,the approach is applied to the fatigue life prediction of 2A12-T4 aluminium alloy specimen under cyclic loading of tension-torsion. The results indicate a good agreement with the experimental data.  相似文献   

7.
A classical structural optimisation problem consists of a problem-specific objective function which has to be minimised in consideration of particular constraints with respect to design and state variables. In this contribution we adopt a conceptually different approach for the design of a structure which is not based on a classical optimisation technique. Instead, we establish a constitutive micro-sphere-framework in combination with an energy-driven anisotropic microstructural growth formulation, which was originally proposed for the simulation of adaptation and remodelling phenomena in hard biological tissues such as bones.The goal of this contribution is to investigate this anisotropic growth formulation with a special emphasis on its application to structural design problems. To this end, four illustrative three-dimensional benchmark-type boundary value problems are discussed and compared qualitatively with the results obtained by classical structural optimisation strategies. The simulation results capture the densification effects and clearly identify the main load bearing regions. It turns out, that even though making use of this conceptually different growth formulation as compared to the procedures used in a classical structural optimisation context, we identify qualitatively very similar structures or rather regions of densification. Moreover, in contrast to common structural optimisation strategies, which mostly aim to optimise merely the size, shape or topology, our formulation also contains the improvement of the material itself, which—apart from the structural improvement—results in the generation of problem-specific local material anisotropy and textured evolution.  相似文献   

8.
9.
各向异性损伤力学中的弹塑性分析   总被引:7,自引:0,他引:7  
提出了一套分析损伤力学问题的各向异性弹塑性理论公式及其相应的有限元分析,通过对各向同性及各向异性损伤力学的数值算例的分析说明该理论公式的适用性。  相似文献   

10.
In this work, non-associative finite strain anisotropic elastoplasticity fully coupled with ductile damage is considered using a thermodynamically consistent framework. First, the kinematics of large strain based on multiplicative decomposition of the total transformation gradient using the rotating frame formulation, is recalled and different objective derivatives defined. By using different anisotropic equivalent stresses (quadratic and non-quadratic) in yield function and in plastic potential, the evolution equations for all the dissipative phenomena are deduced from the generalized normality rule applied to the plastic potential while the consistency condition is still applied to the yield function. The effect of the objective derivatives and the equivalent stresses (quadratic or non-quadratic) on the plastic flow anisotropy and the hardening evolution with damage is considered. Numerical aspects mainly related to the time integration of the fully coupled constitutive equations are discussed. Applications are made to the AISI 304 sheet metal by considering different loading paths as tensile, shear, plane tensile and bulge tests. For each loading path the effect of the rotating frame, the equivalent stress (quadratic or non-quadratic) and the normality rule (with respect to yield function or to the plastic potential) are discussed on the light of some available experimental results.  相似文献   

11.
Experimental studies of the surface stress of solids typically work with surfaces that are not perfectly planar. The experiment then probes an effectively averaged surface stress. The evolution of the surface morphology, for instance during film growth or reconstruction, is also affected by the surface stress acting on a corrugated surface. Here, we analyze the mechanics of rough surfaces in a continuum framework. In a generalization of the approach of Weissmüller and Duan [2008. Phys. Rev. Lett. 101, 146102] to solids with anisotropic elasticity, anisotropic surface stress and anisotropic roughness, we focus on the effectively averaged surface stress that determines the mean compensating stress in the bulk. Important concepts are the projection of out-of-plane stresses at inclined segments of a surface into the macroscopic surface plane, and the transverse coupling between the out-of-plane and in-plane components of the surface-induced stress in the bulk. We show that the coupling of the surface stress at a corrugated surface into a planar substrate depends on the geometry of the corrugation exclusively through the surface orientation distribution function. Special geometries are inspected with an eye on illustrating the impact of anisotropic elasticity as well as geometric anisotropy, which both feed into the anisotropy of the effective surface stress.  相似文献   

12.
Following a framework of elastic degradation and damage previously proposed by the authors, an ‘extended’ formulation of orthotropic damage in initially isotropic materials, based on volumetric/deviatoric decomposition, is presented. The formulation is founded on the concept of energy equivalence and makes use of second-order symmetric tensor damage variables. It is characterized by fourth-order damage-effect tensors (relating nominal to effective stresses and strains) built from the underlying second-order damage tensors and decomposed in product-form in isotropic and anisotropic parts. The formulation is developed in two steps. First, secant relations are established. In the isotropic case, the model embeds a path parameter allowing to range between pure volumetric to pure deviatoric damage. With the two undamaged material constants this makes a total of three constant parameters plus an evolving scalar damage variable, giving rise to a four-parameter model with two varying isotropic material coefficients. In the anisotropic case, the model is still characterized by the same three material constants plus three evolving variables which are the principal values of a second-order damage tensor. This leads to a six-parameter restricted form of orthotropic damage. In the second step, damage evolution rules are formulated in terms of a pseudo-logarithmic rate of damage. This allows to define meaningful conjugate forces that constitute a feasible space in which loading functions and damage evolution rules can be defined. The present ‘extended’ formulation is closed by the derivation of the tangent stiffness.  相似文献   

13.
An anisotropic compressible plasticity model is incorporated into the framework of the micromorphic continuum theory in order to describe some size effects observed in ductile nickel foams. This continuum model reproduces the fact that the presence of a machined hole in a foam plate does not affect its mechanical response when the hole size becomes comparable to the cell size of the material. Finite element simulations are compared to strain field measurements in nickel foam plates with a machined hole for different hole sizes, in order to identify the characteristic length of the model. Based on a simple ductile damage law, the model is then shown to be able to account for the strong anisotropy of the initiation of crack propagation in central crack panels made of nickel foams under mode I loading conditions.  相似文献   

14.
The paper deals with a consistent and systematic general framework for the development of anisotropic continuum damage in ductile metals based on thermodynamic laws and nonlocal theories. The proposed model relies on finite strain kinematics based on the consideration of damaged as well as fictitious undamaged configurations related via metric transformation tensors which allow for the interpretation of damage tensors. The formulation is accomplished by rate-independent plasticity using a nonlocal yield condition of Drucker–Prager type, anisotropic damage based on a nonlocal damage growth criterion as well as non-associated flow and damage rules. The nonlocal theory of inelastic continua is established to be able to take into account long-range microstructural interaction. The approach incorporates macroscopic interstate variables and their higher-order gradients which properly describe the change in the internal structure and investigate the size effect of statistical inhomogeneity of the heterogeneous material. The idea of bridging length-scales is made by using higher-order gradients in the evolution equations of the equivalent inelastic strain measures which leads to a system of elliptic partial differential equations which is solved using the finite difference method at each iteration of the loading step and the displacement-based finite element procedure is governed by the standard principle of virtual work. Numerical simulations of the elastic–plastic deformation behavior of damaged solids demonstrate the efficiency of the formulation. Tension tests undergoing large strains are used to investigate the damage growth in high strength steel. The influence of various model parameters on the prediction of the deformation and localization of ductile metals is discussed.  相似文献   

15.
The motivating key for this work was the absence of a phenomenological model that can reasonably predict a variety of non-proportional experimental data on the anisotropic Mullins effect for different types of rubber-like materials. Hence, in this paper, we propose a purely phenomenological direction dependent orthotropic model that can describe the anisotropic Mullins behaviour with permanent set and, has orthotropic invariants that have a clear physical interpretation. The formulation is based on an orthotropic principal axis theory recently developed for nonlinear elastic problems. A damage function and a direction dependent damage parameter are introduced in the formulation to facilitate the analysis of anisotropic stress softening in rubber-like materials. A direction dependent free energy function, written explicitly in terms of principal stretches, is postulated. The proposed theory is able to predict and compares well with experimental data available in the literature for different types of rubberlike materials.  相似文献   

16.
The aim of this paper is to incorporate plastic anisotropy into constitutive equations of porous ductile metals. It is shown that plastic anisotropy of the matrix surrounding the voids in a ductile material could have an influence on both effective stress–strain relation and damage evolution. Two theoretical frameworks are envisageable to study the influence of plastic flow anisotropy: continuum thermodynamics and micromechanics. By going through the Rousselier thermodynamical formulation, one can account for the overall plastic anisotropy, in a very simple manner. However, since this model is based on a weak coupling between plasticity and damage dissipative processes, it does not predict any influence of plastic anisotropy on cavity growth, unless a more suitable choice of the thermodynamical force associated with the damage parameter is made. Micromechanically-based models are then proposed. They consist of extending the famous Gurson model for spherical and cylindrical voids to the case of an orthotropic material. We derive an upper bound of the yield surface of a hollow sphere, or a hollow cylinder, made of a perfectly plastic matrix obeying the Hill criterion. The main findings are related to the so-called ‘scalar effect’ and ‘directional effect’. First, the effect of plastic flow anisotropy on the spherical term of the plastic potential is quantified. This allows a classification of sheet materials with regard to the anisotropy factor h; this is the scalar effect. A second feature of the model is the plasticity-induced damage anisotropy. This results in directionality of fracture properties (‘directional effect’). The latter is mainly due to the principal Hill coefficients whilst the scalar effect is enhanced by ‘shear’ Hill coefficients. Results are compared to some micromechanical calculations using the finite element method.  相似文献   

17.
A simple plasticity model for prediction of non-coaxial flow of sand   总被引:1,自引:0,他引:1  
A bounding surface plasticity model for non-coaxiality, another aspect of anisotropic behavior of sands under rotation of principal stress axes; is developed in the critical state framework. Numerous experimental evidences exist that corroborate dependence of plastic shear strain rate direction on inherent fabric anisotropy. At first, general expressions for plastic strain rate with respect to possible emerge of non-coaxial flow are obtained. Consequently, using an anisotropy state parameter that is specially developed for this model and accounts for the interaction between imposed loading and soil fabric; effect of anisotropy on plastic flow direction is taken into account. Besides, novel circumstances are proposed for plastic modulus and dilatancy under rotation of principal stress axes. Finally, it is shown that the model is able to simulate successfully the non-coaxial behavior of sands subjected to principal stress axes rotation.  相似文献   

18.
19.
In this paper the mathematical modeling of discontinuities using the discrete approximation and the continuum approximation with weak discontinuities is presented. First, the kinematics of discontinuities is discussed, then two constitutive models based on the continuum damage mechanics theory are developed. The first model is an isotropic damage model and is used in the discrete approximation. The second model is an anisotropic damage model and is used in the continuum approximation. These models are characterized for weighing the mode of failure in the failure criterion. An energy analysis is proposed to establish the equations that relate the parameters of both constitutive models; the fulfillment of the involved equations guarantee that both models are energetically equivalent. It is concluded that the proposed models are suitable to reproduce the constitutive behavior of discontinuities.  相似文献   

20.
Based on the work for a combined damage/plasticity model of geologic materials and the bifurcation analysis of material failure, an analytical framework is established to study the rate-dependent transition from continuum damage to discrete fracture in dynamic brittle failure. Because of the simple formulation, a vectorized constitutive model solver can be designed for large-scale computer simulation. A continuum tangent stiffness tensor is invoked for the tensile damage evolution such that the bifurcation analysis can be performed to identify the initiation and orientation of tensile failure. It is shown that the orientation of tensile failure is rate-independent although the limit state is rate-dependent for the rate-dependent tensile damage model. Sample problems are considered to demonstrate the features of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号