首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 398 毫秒
1.
A phenomenological model to predict the Mullins stress-softening effect in an isotropic, incompressible, hyperelastic rubber-like material is proposed which describes deformation induced microstructural damage and the same is characterised by a simple exponential softening function. The proposed isotropic damage function depends on the maximum previous value of the first invariant of the left Cauchy–Green deformation tensor. The proposed model of softening is illustrated with the theory of Gent material model and finally it is validated with experimental data provided in the literature. The model shows a simple functional form and brings out the interrelation between other models of this type.  相似文献   

2.
王晓明  吴荣兴  蒋义  肖衡 《力学学报》2021,53(7):1999-2009
类橡胶材料在经过初次加载后会产生应力软化现象, 也就是Mullins效应. 实验证明应力软化现象会导致材料产生不可恢复变形, 同时引入各向异性特征. 本文基于对数应变构造一个多轴可压缩应变能函数, 先引入耗散来表征应力软化现象, 再引入依赖耗散大小的不可恢复变形量以及各向异性特征量, 使得新模型既可以表征Mullins效应, 又能模拟应力软化作用下产生的不可恢复变形和各向异性特征. 本文在各向同性形函数的基础上, 通过球坐标系的思想, 进一步发展并提出了一个任意方向适用的各向异性形函数. 新模型在材料尚未发生软化(耗散为0)的情况下, 表现出各向同性; 一旦发生应力软化(耗散大于0), 则变为各向异性. 随着加载?卸载循环的累积, 耗散逐渐变大, 不可恢复变形也随之变大直到达到一个稳定的值, 各向异性特性也逐渐变得明显. 新方法得到的结果可以精确匹配经典的实验数据, 并预测不同方向的应力软化现象以及由此产生的不可恢复变形和各向异性特征.   相似文献   

3.
In this work, we attempted to describe the evolution of damage in rubber-like materials due to the Mullins effect and the cavity growth process. To this end we introduced two distinct internal variables into the constitutive laws; the first one essentially describes the Mullins damage and the second describes the cavity growth. The Mullins effect was considered as a continuous type of damage that can be modelled within the continuum damage theory. The cavity growth, being discontinuous at the microscopic scale, was also modelled by a continuous variable after a homogenization procedure. These analyses allow the establishment of a compressible constitutive law describing the strain-softening phenomena for rubber-like materials. In order to identify the material parameters and to verify the efficiency of the model, we carried out experimental studies involving uniaxial, biaxial, and hydrostatic tensions under monotonic and cyclic loading. Comparison between the model-predicted results and the experimental data shows that the present model can efficiently describe both the Mullins damage and the porosity evolution of rubber-like materials under triaxial monotonic or cyclic loading with a satisfactory accuracy. The proposed concept is simple and easy to apply to engineering calculations.  相似文献   

4.
When a rubber specimen is subjected to cyclic loading, not only non-linear behaviour but also damage-induced stress-softening phenomena (the Mullins effect) have been observed. Applications of a continuum damage mechanics model and Ogden and Roxburgh's pseudo-elastic model to describe the Mullins effect in elastomers have been considered. Both models together with Gao's elastic law were implemented to describe the mechanical behaviour of rubber-like materials including the stress-softening phenomenon. Two sets of experimental data (a simple tension test and a simple tension and pure shear test) are used to validate the constitutive models. Model parameters are estimated via an inverse technique. Computational results show that both constitutive models together with Gao's elastic law can describe the typical Mullins effect. From engineering point of view, the pseudo-elastic model has the advantages that (i) the model is simple and practical, since it considers that the stress-softening function is only activated on unloading or reloading paths, (ii) the model with a slight modification of the damage variable is very stable in finite element calculations, and (iii) the numerical results agree very well with experimental data in both simple tension and pure shear deformation. Two applications illustrate the capability of combining the pseudo-elastic model with Gao's elastic law in describing the Mullins effect. It is emphasized that both models are applicable to multiaxial states of stress and strain because both models are energy-based and not strain-based.  相似文献   

5.
This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill’s yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic–plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic–plastic constitutive model is the introduction of anisotropic effect in the Mie–Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM’s version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie–Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \({\varvec{\psi }}\) tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic–plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and \({\mathrm {895\,ms}}^{\mathrm {-1}}\) impact velocities is performed. A good agreement is obtained in each test.  相似文献   

6.
Inflation experiments on thin rubber-like balloons show a complex, history-dependent hysteretic behavior, important for many technological applications. Typically, this is ascribed to the occurrence of damage processes at the micro-scale level. The experimental pressure–strain and stress–strain responses [Johnson, M.A., Beatty, F.M., 1995. The Mullins effect in equibiaxial extension and its influence on the inflation of a balloon. Int. J. Eng. Sci. 33(2), 223–245], suggest that for successive cyclic experiments also the occurrence of healing for previously damaged material may play a crucial role (see [Diani, J., Fayolle, B., Gilormini, P., 2009. A review on the Mullins effect, Eur. Polym. J. 45, 601–612] and references therein). In this work we apply a recently proposed, micro-structure-based model for damage and healing effects in rubber-like materials to the inflation problem of a thin spherical balloon. The model, while keeping a computational efficiency, is shown to be in a significant qualitative agreement with the available experimental results.  相似文献   

7.
Following a framework of elastic degradation and damage previously proposed by the authors, an ‘extended’ formulation of orthotropic damage in initially isotropic materials, based on volumetric/deviatoric decomposition, is presented. The formulation is founded on the concept of energy equivalence and makes use of second-order symmetric tensor damage variables. It is characterized by fourth-order damage-effect tensors (relating nominal to effective stresses and strains) built from the underlying second-order damage tensors and decomposed in product-form in isotropic and anisotropic parts. The formulation is developed in two steps. First, secant relations are established. In the isotropic case, the model embeds a path parameter allowing to range between pure volumetric to pure deviatoric damage. With the two undamaged material constants this makes a total of three constant parameters plus an evolving scalar damage variable, giving rise to a four-parameter model with two varying isotropic material coefficients. In the anisotropic case, the model is still characterized by the same three material constants plus three evolving variables which are the principal values of a second-order damage tensor. This leads to a six-parameter restricted form of orthotropic damage. In the second step, damage evolution rules are formulated in terms of a pseudo-logarithmic rate of damage. This allows to define meaningful conjugate forces that constitute a feasible space in which loading functions and damage evolution rules can be defined. The present ‘extended’ formulation is closed by the derivation of the tangent stiffness.  相似文献   

8.
复杂应力状态镍基单晶合金低周疲劳损伤模型   总被引:1,自引:0,他引:1  
丁智平  陈吉平  尹泽勇 《应用力学学报》2005,22(2):310-314,i014
根据连续介质损伤力学理论,采用应变能释放率作为热力学广义力描述正交异性材料的疲劳损伤过程,引入取向函数考虑镍基单晶合金晶体取向对疲劳损伤的非线性影响,提出了一个各向异性疲劳损伤模型。应用多元线性回归分析方法,拟合疲劳试验数据可确定模型参数。从应变能释放率的应变空间表达式出发,导出了含有3个弹性常数的单晶合金应变三轴性因子,它既反映了材料性能的晶体取向相关性,又反映了正应力和剪应力的相互作用,并可退化为各向同性材料的应变三轴性因子。利用该模型对CMSX-2镍基单晶合金在应力控制对称循环拉-扭载荷作用下的低周疲劳寿命进行预测,预测值与试验值吻合的相当好,试验所得数据均落在2.2倍偏差的分布带内。  相似文献   

9.
A study of direction-based models for the representation of isotropic and anisotropic hyperelastic behaviour of rubber-like materials is proposed. The interest in such models is sustained by their ability to account for the Mullins effect induced anisotropy. For such a purpose, the directional models should be initially isotropic and representative of the hyperelastic behaviour of rubber-like materials. Various models were defined according to different sets of directions. Models were tested in terms of their initial anisotropy and their ability to reproduce the classic full-network hyperelastic behaviour. Various models were proved to perform very well.  相似文献   

10.
When an unfilled or particle reinforced rubber is subjected to cyclic loading–unloading with a fixed amplitude from its natural reference configuration, the stress required on reloading is less than on the initial loading for a deformation up to the maximum value of the stretches achieved. The stress differences in successive loading cycles are largest during the first and second cycles and become negligible after about 4–6 cycles. This phenomenon is known as the Mullins effect. In this paper new experimental data are reported showing the change in material symmetry for an initially undamaged and isotropic material subjected to uniaxial and biaxial extension tests. The effect of preconditioning in one direction on the mechanical response when loaded in a perpendicular direction is discussed. A simple phenomenological model is derived to account for stress softening and changes in material symmetry. The formulation is based on the theory of pseudo-elasticity, the basis of which is the inclusion of scalar variables in the energy function. When active, these variables modify the form of the energy function during the deformation process and therefore change the material response. The general formulation is specialized to pure homogeneous deformation in order to fit the new data. The numerical results are in very good agreement with the experimental data.  相似文献   

11.
A phenomenological study of rubber-like materials undergoing pure homogeneous strain such as uniaxial tension, pure shear and (equi-) biaxial tension, leads to a generalized strain energy density representation for hyperelastic incompressible elastomeric material behavior. Based on experimental observations, an additional decomposition of the strain energy density into two functions, each depending on one of the non-constant principal strain invariants, has been assumed. A new building process of these functions is then proposed combined with a simple and fast parameter identification. The former is progressive and requires only two sets of data. An excellent agreement between theory and experimental data has been observed on numerous experiments. The new model seems particularly well adapted to account for the state of strain response dependence for rubbers as for thermoplastic elastomers.  相似文献   

12.
A phenomenological theory is presented for describing the anisotropic plastic flow of orthotropic polycrystalline aluminum sheet metals under plane stress. The theory uses a stress exponent, a rate-dependent effective flow strength function, and five anisotropic material functions to specify a flow potential, an associated flow rule of plastic strain rates, a flow rule of plastic spin, and an evolution law of isotropic hardening of a sheet metal. Each of the five anisotropic material functions may be represented by a truncated Fourier series based on the orthotropic symmetry of the sheet metal and their Fourier coefficients can be determined using experimental data obtained from uniaxial tension and equal biaxial tension tests. Depending on the number of uniaxial tension tests conducted, three models with various degrees of planar anisotropy are constructed based on the proposed plasticity theory for power-law strain hardening sheet metals. These models are applied successfully to describe the anisotropic plastic flow behavior of 10 commercial aluminum alloy sheet metals reported in the literature.  相似文献   

13.
一种新的橡胶材料弹性本构模型   总被引:1,自引:0,他引:1  
魏志刚  陈海波 《力学学报》2019,51(2):473-483
橡胶类材料本构关系对于科学研究和工程应用具有重要意义,但已有的橡胶模型的拟合能力和可靠性需要进一步提高.为解决此问题,本文提出了一种新的橡胶材料的各向同性、不可压缩柯西弹性模型.研究了橡胶材料本构关系的模型形式,基于平面应力变形状态,提出了一种以较大的两个伸长率为自变量、适用于一般变形状态的橡胶材料弹性本构模型形式;研究了橡胶材料在侧面受约束条件下的变形规律,分析了橡胶材料本构关系需要满足的约束条件;在此基础上,结合一个可以通过实验确定的描述平面拉伸变形状态下的橡胶材料力学特性函数,提出一种将该函数拓展为平面应力状态一般模型的方法,并给出了一个具体的函数形式,形成了一个新的不可压缩、各向同性的橡胶材料弹性本构模型.使用5组包含3种类型实验的数据和一组较全面的双轴测试数据对该模型进行了参数拟合,结果表明:该模型具有很好的拟合精度和更高的可靠性,仅用一种类型实验数据,如单轴拉伸或者平面拉伸等,也能获得较好的拟合结果.   相似文献   

14.
A micromechanically based non-affine network model for finite rubber elasticity and viscoelasticity was discussed in Parts I and II [Miehe, C., Göktepe, S., Lulei, F., 2004. A micro-macro approach to rubber-like materials. Part I: The non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617-2660; Miehe, C., Göktepe, S., 2005. A micro-macro approach to rubber-like materials. Part II: Viscoelasticity model for polymer networks. J. Mech. Phys. Solids, published on-line, doi:10.1016/j.jmps.2005.04.006.] of this work. In this follow-up contribution, we further extend the micro-sphere network model such that it incorporates a deformation-induced softening commonly referred to as the Mullins effect. To this end, a continuum formulation is constructed by a superimposed modeling of a crosslink-to-crosslink (CC) and a particle-to-particle (PP) network. The former is described by the non-affine elastic network model proposed in Part I. The Mullins-type damage phenomenon is embedded into the PP network and micromechanically motivated by a breakdown of bonds between chains and filler particles. Key idea of the constitutive approach is a two-step procedure that includes (i) the set up of micromechanically based constitutive models for a single chain orientation and (ii) the definition of the macroscopic stress response by a directly evaluated homogenization of state variables defined on a micro-sphere of space orientations. In contrast to previous works on the Mullins effect, our formulation inherently describes a deformation-induced anisotropy of the damage as observed in experiments. We show that the experimentally observed permanent set in stress-strain diagrams is achieved by our model in a natural way as an anisotropy effect. The performance of the model is demonstrated by means of several numerical experiments including the solution of boundary-value problems.  相似文献   

15.
The theory of small deformation superimposed on a large deformation of an elastic solid is used to investigate the buckling of anisotropic elastic plate under uniaxial compression. The buckling direction (the direction of buckling wave) is generally not aligned with the compression direction. The equation for determining the buckling direction is obtained. It is found that the out-of-plane buckling of anisotropic elastic plate is possible and both buckling conditions for flexural and extensional modes are presented. As a specific case of buckling of anisotropic elastic plate, the buckling of an orthotropic elastic plate subjected to a compression in a direction that forms an arbitrary angle with an elastic principal axis of the materials is analyzed. It is found that the buckling direction depends on the angle between the compression direction and the principal axis of the materials, the critical compressive force and plate-thickness parameters. In the case that the compression direction is aligned with the principal axis of the materials, the buckling direction will be aligned with the compression one irrespective of critical compressive force and plate-thickness. Project supported by the National Natural Science Foundation of China (No. 19772032).  相似文献   

16.
This note presents a damage model for fibre-composite materials based in the approach by Matzenmiller et al. [Matzenmiller, A., Lubliner, J., Taylor, R.L., 1995. A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20, 125]. In this work, the model is developed in a three-dimensional context with modified formulation for the constitutive law and damage evolution. An orthotropic composite subjected to mixed failure modes is assumed in this development. Its formulation and implementation details are provided.  相似文献   

17.
To the best of our knowledge, there are no constitutive models that properly describe experimental data on anisotropy of the Mullins effect. In this paper, such a micro-mechanical model is proposed for carbon black filled rubbers. The model describes the deformation induced anisotropy and permanent set as well. Damage of the polymer-filler network is considered as a consequence of chain sliding on or debonding from aggregates. In contrast to previous works on anisotropy of the Mullins effect we do not introduce any phenomenological damage function. Damage in different directions is governed by a network evolution concept which describes the changes in the inter-aggregate distribution of polymer chains. The model includes a few number of physically motivated material constants and demonstrates good agreement with own experimental data on subsequent uniaxial tensions in two orthogonal directions.  相似文献   

18.
本文讨论了炭黑填充橡胶材料的唯象本构模型。考虑到Mooney模型无法表征橡胶类材料大变形阶段的力学特性,首先利用实验数据,对Mooney模型进行了分析,讨论了炭黑含量与Mooney模型准确表征橡胶材料应变区间大小的关系,Mooney模型对纯剪切和等比双向拉伸等复杂变形的预测能力,同时也分析了材料参数对Mooney模型的影响。最后在Mooney模型的基础上添加了一个修正项,且改进后的Mooney模型满足Treloar和Ogden六项假设。通过与实验数据对比分析,改进Mooney模型可以较好地描述橡胶材料大变形阶段的应力应变关系,同时提高了预测橡胶材料复杂变形的能力。  相似文献   

19.
The present paper reports and rationalizes the use of Continuum Damage Mechanics (CDM) to describe the Mullins effect in elastomers. Thermodynamics of rubber-like hyperelastic materials with isotropic damage is considered. Since it is demonstrated that stress-softening is not strictly speaking a damage phenomenon, the limitations of the CDM approach are highlighted. Moreover, connections with two-network-based constitutive models proposed by other authors are exhibited through the choice of both the damage criterion and the measure of deformation. Experimental data are used to establish the evolution equation of the stress-softening variable, and the choice of the maximum deformation endured previously by the material as the damage criterion is revealed as questionable. Nevertheless, the present model agrees qualitatively well with experiments except to reproduce the strain-hardening phenomenon that takes place as reloading paths rejoin the primary loading path. Finally, the numerical implementation highlights the influence of loading paths on material response and thereby demonstrates the importance of considering the Mullins effect in industrial design.  相似文献   

20.
A thermodynamically consistent dissipative model is proposed to describe softening phenomena in anisotropic materials. The model is based on a generalized polyconvex anisotropic strain energy function represented by a series. Anisotropic softening is considered by evolution of internal variables governing the anisotropic properties of the material. Accordingly, evolution equations are formulated and anisotropic conditions for the onset of softening are defined. In numerical examples, the model is applied to simulate the preconditioning behavior of soft biological tissues subjected to cyclic loading experiments. The results suggest that the general characteristics of preconditioning with different upper load limits are well captured including hysteresis and residual deformations. A model for the Mullins effect is obtained as a special case and shows very good agreement with experimental data on mouse skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号