首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A theoretical and computational framework for anisotropic continuum damage mechanics at large strains
Authors:A Menzel  P Steinmann  
Abstract:The main objective of this work is the formulation and algorithmic treatment of anisotropic continuum damage mechanics at large strains. Based on the concept of a fictitious, isotropic, undamaged configuration an additional linear tangent map is introduced which allows the interpretation as a damage deformation gradient. Then, the corresponding Finger tensor – denoted as damage metric – constructs a second order, internal variable. Due to the principle of strain energy equivalence with respect to the fictitious, effective space and the standard reference configuration, the free energy function can be computed via push-forward operations within the nominal setting. Referring to the framework of standard dissipative materials, associated evolution equations are constructed which substantially affect the anisotropic nature of the damage formulation. The numerical integration of these ordinary differential equations is highlighted whereby two different schemes and higher order methods are taken into account. Finally, some numerical examples demonstrate the applicability of the proposed framework.
Keywords:Continuum damage mechanics  Anisotropy  Finite deformations  Time integration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号