首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本文研究了各向同性固体的化学-力学耦合问题,在传统化学弹性理论描述的扩散-变形耦合关系基础上,进一步考虑了化学反应与固体变形的相互作用关系,发展了等温状态下固体-扩散-反应-变形耦合的线性化学弹性理论,拓展了化学弹性力学的应用范围.该理论能够同时描述固体内介质扩散和固体与介质之间化学反应两个不同时间尺度的化学过程,并给出由此引起的弹性范围内的应变和应力.为应用该模型求解具体化学弹性问题,本文通过构造扩散-反应位移势函数来获得位移特解形式,再与齐次Lamé方程通解叠加获得完整解;针对反应控制问题,引入化学弹性准静态假设,将反应-扩散-变形全耦合的瞬态过程分解为两个可解耦的相继过程,从而获得相应位移解.基于此解法,本文获得了反应控制的双层球壳结构化学弹性问题的解析解,并分析了化学反应、几何结构和弹性模量对应力分布的影响.  相似文献   

2.
将多种数值方法耦合,充分利用各种方法的优点建立新的数值方法,是求解三维复杂问题的有效途径之一.本文将无单元Galerkin (Element-Free Galerkin, EFG)方法、有限元法和维数分裂法耦合,提出了求解三维弹性力学问题的快速耦合方法(Fast Hybrid Method, FHM).将三维弹性力学问题分裂为若干个二维平面问题,对于每个二维问题采用罚函数法施加边界条件,并推导其相应的积分弱形式,引入Shepard基函数的移动最小二乘法建立形函数,进而推导二维平面问题的离散方程.第三个方向上采用有限元法将这些二维离散方程进行耦合,可以得到原三维弹性力学问题的快速耦合方法数值解的求解公式.通过数值算例验证了本文快速耦合方法求解三维弹性力学问题的收敛性,将数值解与解析解对比,说明了本文方法求解三维弹性力学问题的有效性.  相似文献   

3.
将弹性力学辛对偶求解方法与Laplace变换相结合,提出了一个求解粘弹性平面问题的新方法。首先利用Laplace变换,将粘弹性平面问题转化为一个准弹性问题,在辛弹性力学的框架下,利用分离变量和辛本征展开法对其进行求解,然后由逆变换得到原问题的解。为证明方法的有效性,求解分析了矩形域平面粘弹性圣维南问题,得到了令人满意的结果。  相似文献   

4.
圆柱型正交各向异性弹性楔体顶端受有集中力偶的经典解,当顶角满足一定关系时,其应力成为无穷大,这是个佯谬.该文在哈密顿体系下将该问题进行重新求解,即利用极坐标各向异性弹性力学哈密顿体系.在原变量和其对偶变量组成的辛几何空间求解特殊本征值的约当型本征解,从而直接给出该佯谬问题的解析解.结果再次表明经典力学中的弹性楔佯谬解对应的是哈密顿体系下辛几何的约当型解.  相似文献   

5.
多层层合板圣维南问题的解析解   总被引:9,自引:2,他引:9  
钟万勰  姚伟岸 《力学学报》1997,29(5):617-626
将哈密尔顿体系理论引入到多层层合板问题之中,建立了一套求解该问题的横向哈密尔顿算子矩阵的本征函数向量展开解法,并成功地求解出圣维南问题的解析解.进一步显示了弹性力学新求解体系的有效性及其应用潜力  相似文献   

6.
薄板理论的正交关系及其变分原理   总被引:4,自引:2,他引:4  
利用平面弹性与板弯曲的相似性理论,将弹性力学新正交关系中构造对偶向量的思路推广到 各向同性薄板弹性弯曲问题,由混合变量求解法直接得到对偶微分方程并推导了对应的变分 原理. 所导出的对偶微分矩阵具有主对角子矩阵为零矩阵的特点. 发现了两个独立的、对称 的正交关系,利用薄板弹性弯曲理论的积分形式证明了这种正交关系的成立. 在恰当选择对 偶向量后,弹性力学的新正交关系可以推广到各向同性薄板弹性弯曲理论.  相似文献   

7.
本文基于热局部非平衡(LTNE)条件和加权平均温度概念,并假设孔隙流体由溶质和溶剂两组元组成,对页岩(饱和多孔介质),推导给出了一种LTNE条件下的化学-热-弹性模型,同时讨论了耦合方程组的解耦求解问题.作为模型的应用,考虑无限大平面含一圆形孔的情况,研究了冷/热对流以及溶质摩尔分数突变边界条件下圆孔附近的孔隙压力和化-热应力问题,用Laplace变换得到了平面轴对称情况下有关力学变量的表达式.数值分析了圆孔边界上冷/热对流的Biot数和溶质摩尔分数改变量对圆孔附近孔隙压力和化-热应力的影响.结果表明:在Biot数为中等值(1~5)范围内,LTNE效应是非常明显的;化学作用对孔隙压力和固相应力的影响不可忽视.  相似文献   

8.
城市高架桥车-桥-墩系统竖向振动分析   总被引:1,自引:0,他引:1  
假设城市高架桥为两端简支的欧拉-伯努利梁模型以及桥墩为底部固结的柱,考虑两自由度车辆移动系统与桥面结构表面接触处不平整产生的随机激励以,建立了多个移动车辆系统-桥-墩的耦合力学模型,并且给出了耦合振动方程详细的求解步骤.数值分析采用Wilson-θ法求解.通过仿真分析,讨论了在不同路面等级、不同车辆移动速度下桥梁跨中位移响应和桥墩轴力的变化规律.最后根据车-桥-墩耦合力学模型和车-桥耦合力学模型,比较了两种分析模型对桥墩底部轴力和桥梁跨中截面位移的影响.分析结果表明桥墩对桥梁跨中截面位移的影响可以忽略不计,但是对桥墩本身所受轴力的影响则非常显著.  相似文献   

9.
解的唯一性定理是用逆解法或半逆解法求解弹性力学问题的理论依据,在此用应力函数法、应力法、应力和函数法求解弹性力学平面问题,让学生切实、深入地理解解的唯一性定理的内在含义,丰富和扩大弹性力学的解题方法和应用范围。  相似文献   

10.
弹性力学的实时神经计算原理与数值仿真   总被引:16,自引:0,他引:16  
孙道恒  胡俏  徐灏 《力学学报》1998,30(3):348-353
针对现代结构分析的特点,提出了基于神经网络结构的弹性力学分析原理;给出求解该问题的网络———改进的Hopfield和TH网络.提出用BP网络来实现单元刚度矩阵的实时计算.最后,对两个简单结构的弹性力学神经计算进行了数值仿真  相似文献   

11.
This paper presents a theoretical method to investigate the multiple scattering of electro-elastic waves and the dynamic stress around a buried cavity in a functionally graded piezoelectric material layer bonded to a homogeneous piezoelectric material. The analytical solutions of wave fields are expressed by employing wave function expansion method, and the expanded mode coefficients are determined by satisfying the boundary conditions around the cavity. The image method is used to satisfy the mechanical and electrically short conditions at the free surface of the structure. According to the analytical expression of this problem, the numerical solutions of the dynamic stress concentration factor around the cavity are presented. The effects of the piezoelectric property, the position of the cavity in the layer, the incident wave number and the material properties on the dynamic stress around the cavity are analyzed. Analyses show that the piezoelectric property has great effect on the dynamic stress in the region of higher frequencies, and the effect increases with the decrease of the thickness of FGPM layer. If the material properties of the homogeneous piezoelectric material are greater than those at the surface of the structure, the dynamic stress resulting from the piezoelectric property is greater. The effect material properties at the two boundaries of FGPM layer on the distribution of dynamic stress around the cavity is also examined.  相似文献   

12.
The wrinkling of a stiff thin film bonded on a soft elastic layer and subjected to an applied or residual compressive stress is investigated in the present paper. A three-dimensional theoretical model is presented to predict the buckling and postbuckling behavior of the film. We obtained the analytical solutions for the critical buckling condition and the postbuckling morphology of the film. The effects of the thicknesses and elastic properties of the film and the soft layer on the characteristic wrinkling wavelength are examined. It is found that the critical wrinkling condition of the thin film is sensitive to the compressibility and thickness of the soft layer, and its wrinkling amplitude depends on the magnitude of the applied or residual in-plane stress. The bonding condition between the soft layer and the rigid substrate has a considerable influence on the buckling of the thin film, and the relative sliding at the interface tends to destabilize the system.  相似文献   

13.
The problem studied in this paper is that of a coated semi-infinite plane subjected to a concentrated force in the upper thin layer (or film). The elastic properties of the coating material are different from those of the substrate, and a perfect bond is assumed between the two materials. The exact solutions of stress functions in a series form are obtained by the method of image. The terms in series form of the stress functions correspond to the image points from the lower order to the higher. The recurrence relations of the stress functions are given, i.e., the stress functions corresponding to the higher order image points are determined by the lower ones. Hence, from the original stress functions for an infinite plane subjected to a concentrated force, the explicit formulas of all terms of the stress function series can be derived. Also, through comparisons between the theoretical results and the numerical results by FEM, it is verified that the convergence rate of the solutions is very rapid. In most practical cases only the first several image points are sufficient to ensure the accuracy of the solutions.  相似文献   

14.
Composite pipes are becoming popular in the offshore oil and gas industry. These pipes are connected to one-another by various configurations of joints. The joints are usually the weakest link in the system. In this investigation we examine the response of various joint configurations subjected to torsion, one of the most common loading conditions in piping systems. Specifically, the theoretical analysis used to evaluate the stress field in the adhesive layers of tubular and socket type bonded sandwich lap joints is presented here. The two adherends of the joints may have different thickness and materials, and the adhesive layer may be flexible or brittle. The analysis is based on the general composite shell theory. The stress concentrations at and near the end of the joints as functions of various parameters, such as the overlap length, and thickness of the adhesive layer are studied. The effects of different adherend thickness ratios, adhesive thickness and overlap length are also studied. Results obtained from the proposed analytical solutions agree well with the results obtained from finite element analysis and those obtained by other workers.  相似文献   

15.
A model describing the stress-strain state in the neighborhood of a physical cut with an arbitrary distribution of external load along its faces is presented. The stress-strain state of a material layer bounded by the continuations of the cut faces is considered. The interaction between the layer and the external half-planes leads to a closed system of integrodifferential equations for the mean stress components in the layer, which splits into two equations for the mean normal stresses and an equation for the mean shear stress. Numerical solutions of the system for the cases of symmetric and antisymmetric loading of the faces by concentrated forces are given. Conditions for the transition of the tip region of the cut to the state of plasticity and fracture are considered.  相似文献   

16.
Bonding with reinforcements can increase the stiffness of elastic layers in the normal direction. The flexibility effect of the reinforcement on the bonded elastic layers of a circular cross-section subjected to pure bending moment is analyzed through a theoretical approach. Based on two kinematics assumptions in the elastic layers, the closed-form solutions of the horizontal displacements in the elastic layers and the reinforcements are solved using the governing equations established by stress equilibrium in the elastic layers and the reinforcements. Through these solved displacements, the tilting stiffness of the bonded elastic layer, the shear stress on the bonding surfaces, and the internal forces of the reinforcements are derived in closed forms.  相似文献   

17.
用压电材料进行损伤鉴别的理论与数值分析   总被引:1,自引:0,他引:1  
对压电材料用于损伤监测的理论和数值分析做了一些研究。首先,设计了一种用压电材料进行损伤监测的模型。然后,对这个模型进行分析,找出简单有效的解答办法,将求解过程分解为断裂力学分析和压电分析两部分,并通过适当的假设,进行了详细的理论推导。通过正电有限元程序进行仿真计算,将数值计算结果与理论解进行比较以验证提出理论的正确性,并分析得到了裂纹参数与压电层表面电势变化之间的关系和普通弹性材料泊松比对波峰参数的影响。最后,用提出的方法验算了两个例题。从结果来看,理论结果和数值结果非常接近。  相似文献   

18.
An elastic layer of circular cross-section which is bonded between rigid plates and subjected to pure bending moment is analyzed through a theoretical approach. Based on two kinematic assumptions, the governing equations for the two horizontal displacement functions are established from the equilibrium equations. The horizontal displacements are then solved by satisfying the stress boundary conditions in the elastic layer. Through these solved displacements, the vertical stress in the elastic layer, the shear stress on the bonding surfaces, and the tilting stiffness of the bonded layer are derived in closed-forms and are also compared with the results of finite element analysis.  相似文献   

19.
The fracture problems near the interface crack tip for mode Ⅱ of double dissimilar orthotropic composite materials are studied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized bi-harmonic equations,the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions,a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about himaterial engineering parameters. According to the uniqueness theorem of limit,both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same,the stress singularity exponents,stress intensity factors and stresses for mode Ⅱ crack of the orthotropic single material are obtained.  相似文献   

20.
In this work, a self-consistent constitutive framework is proposed to describe the behaviour of a generic three-layered system containing a functionally graded material (FGM) layer subjected to thermal loading. Analytical and semi-analytical solutions are obtained to describe the thermo-elastic and thermo-elastoplastic behaviour of a three-layered system consisting of a metallic and a ceramic layer joined together by an FGM layer of arbitrary composition profile. Solutions for the stress distributions in a generic FGM system subjected to arbitrary temperature transient conditions are presented. The homogenisation of the local elastoplastic FGM behaviour in terms of the properties of its individual phases is performed using a self-consistent approach. In this work, power-law strain hardening behaviour is assumed for the FGM metallic phase. The stress distributions within the FGM systems are compared with accurate numerical solutions obtained from finite element analyses and good agreement is found throughout. Solutions are also given for the critical temperature transients required for the onset of plastic deformation within the three-layered systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号