首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental and analytical buckling pressures are presented for very carefully fabricated thin cylindrical shells with 45, 60 and 75° conical heads and for cylindrical shells with torispherical heads pierced by axisymmetric cylindrical nozzles of various thicknesses and diameters. Nonsymmetric buckling occurs at pressures for which some of the material is loading plastically in the neighborhoods of stress concentrations caused by meridional slope discontinuities. The buckling pressures for the cone-cylinder vessels are predicted within 2.6 per cent and for the pierced torispherical vessels within 4.4 per cent with use of BOSOR5, a computer program based on the finite difference energy method in which axisymmetric large deflections, nonlinear material properties and nonsymmetric bifurcation buckling are accounted for. The predicted buckling pressures of the pierced torispherical specimens are rather sensitive to details of the analytical model in the neighborhood of the juncture between the nozzle and the head. The buckling pressures of the cone-cylinder vessels can be accurately predicted by treatment of the wall material as elastic, enforcement of the full compatibility conditions at the juncture in the prebuckling analysis, and release of the rotation compatibility condition in the bifurcation (eigenvalue) analysis.  相似文献   

2.
We use the equations of nonlinear theory of shallow shells to solve the problem of stability of thin elastic isotropic cylindrical shells, with small initial shape imperfections, that are under the action of external uniform pressure. The problem solution is constructed by the Rayleigh-Ritz method with the approximation of the shell midsurface displacement by double functional sums in trigonometric and beam functions. The system of nonlinear algebraic equations is solved by using the methods of continuation with respect to a close-to-best parameter. For the initial imperfections of the shells, we use their normalized deflections from the limit points of overcritical branches of the loading trajectories. We consider various cases of the shell fixation and support under loading by lateral and hydrostatic uniform pressure. We also construct the range of values of the critical pressure, which, with the maximal deviation of the shell shape from the cylindrical shape up to 30%, covers practically all known experimental data.  相似文献   

3.
充液金属圆柱壳受弹体冲击的整体变形与局部破坏分析   总被引:1,自引:0,他引:1  
在地基梁类比方法基础上,建立了一组充液金属圆柱壳受平头弹体侧向正冲击的理论分析模型,该模型可以确定冲击过程圆柱壳的整体变形及弹性的穿透破坏,利用该模型计算了弹道极限速度,弹体及圆柱壳的冲击响应历程,特别地,分析了内压对弹道极限速度等参数的影响,得到了内压与弹道极限速度的关系帮一些有意义的结论,理论结果与已有实验结果基本吻合。  相似文献   

4.
A group of theoretical models has been developed for analyzing transient dynamic response to filled metallic cylindrical shells impacted by flat-nosed missiles at normal obliquity on the basis of the analogy modeling method of beam-on-foundation. It can be used for solving the global deformation and the local failure of cylindrical shells in the impact process. The ballistic limit speed and impact response history have been calculated by this group of theoretical models, and the inner pressure effect on the ballistic limit speed and some parameters are discussed at length. The quantitative relationship between internal pressure and the ballistic limit speed and some significant conclusions have been obtained, which are basically identical with previous experimental results. Project supported by Shanxi Natural Science and Returnee Foundations (no. 971004)  相似文献   

5.
Stability problems for cylindrical shells under various loading modes were considered in numerous papers. A detailed analysis of such problems can be found, e.g., in the monograph [1]. We refer to the solutions presented in this monograph as classical.For long cylindrical shells in axial compression, one of the buckling modes is the purely beam flexural mode similar to the classical buckling mode of a straight rod. It is well known that it can be studied by using the nonlinear or linearized equations of the membrane theory of shells. In [2], it was shown that, on the basis of such equations constructed starting from the noncontradictory version of geometrically nonlinear elasticity relations in the quadratic approximation [3], under the separate action of the axial compression, external pressure, and torsion, there are also previously unknown nonclassical buckling modes, most of which are shear ones.In the present paper, we show that the use of the above equations for cylindrical shells under compression and external pressure with simultaneous pure torsion or bending permits revealing the earlier unknown torsional, beam flexural, and beam torsional-flexural buckling modes, which are nonclassical, just as those found in [2]. The second of these buckling modes is realized when axially compressing forces are formed in the shell with simultaneous torsion, and the third of them is realized under compression combined with pure bending.It was found that, earlier than the classical buckling modes, the torsional buckling modes can be realized for relatively short shells with small shear rigidity in the tangent plane, while the second and third buckling modes can be realized for relatively long shells.  相似文献   

6.
宋广凯  孙博华 《力学学报》2021,53(2):448-466
柱壳结构广泛应用于各个领域, 但由于其对初始缺陷较为敏感, 容易发生灾难性的屈曲失稳. 本文利用非线性有限元分析程序ABAQUS研究了柱壳屈曲问题, 并应用到了易拉罐的屈曲分析. 首先采用数值模拟的方法验证了Virot等学者的易拉罐屈曲试验结果, 然后为了获得屈曲的一些普适结果, 进一步考察了柱壳的屈曲表现. 对柱壳结构在不同载荷组合、不同几何参数作用下进行了细致分析. 为了讨论的直观, 本文绘制了柱壳结构在受到侧压-轴压载荷作用下外力-屈曲载荷-位移三维屈曲地貌图(称为landscape). 结果表明: 在侧压-轴压-扭转载荷作用下, 试件力-位移曲线出现了"cliff"(断崖)现象; 扭转载荷的施加不利于试件整体稳定性, 并造成了试件对初始缺陷的敏感性; 对于受到轴压-扭转载荷作用的试件, 本文定义承载力为零的平面为"sea level"(海平面)来区分试件破坏模式; 通过对不同边界条件的试件进行分析, 发现试件两端固定可以有效地增加结构的承载能力, 提高稳定性. 对柱壳结构内部充气可以大幅度提升结构的承载能力和稳定性, 减小对初始缺陷的敏感度.   相似文献   

7.
圆柱壳是工程实际中广泛应用的结构,其主要破坏形式是屈曲失稳.作为力学领域的经典问题,圆柱壳稳定性问题的研究非常之多.其中,受均匀轴向压力的圆柱壳由于临界屈曲载荷的理论预测值与早期试验结果之间的巨大差异,更是推动了壳体稳定性理论的不断发展.本文简要回顾了壳体稳定性理论的发展和分类,并对轴压圆柱壳体试验结果分散且远低于理论预测值的原因及含缺陷圆柱壳体的稳定性研究方法进行了总结,然后综述了地下空间顶管、储油罐、加筋圆柱壳及脱层圆柱壳等实际工程中广泛应用的圆柱壳结构稳定性研究的现状和趋势,最后展望了将来对工程应用中圆柱壳结构的稳定性研究的难点和方向.  相似文献   

8.
A numerical investigation of the limit loads is carried out for pressurevessels with part-through slots using a general computational method for the limitanalysis of 3-D structures.The limit pressures are given for a comprehensive range ofgeometric parameters.Some of the calculated results are compared with the results of3-D elastic-plastic finite element analysis and existing numerical solutions.The effectsof various shapes and sizes of part-through slots on the load carrying capacity ofcylindrical shells are investigated and evaluated.Two kinds of typical failure modescorresponding to different dimensions of slots are studied.Based on the numericalresults,a geometric parameter G which combines the slot dimensions and the cylindergeometry is presented.It reasonably reflects the overall effect of slots on the limit loadsof cylinders.An empirical formula for estimating the limit pressures of cylindricalshells with part-through slots is obtained.  相似文献   

9.
Cylindrical shells consisting of cylindrical panels of smaller radius and subjected to uniform external pressure are analyzed for stability. The geometrical parameters of the shells are approximated by Fourier series on a discrete set of points. The Timoshenko theory of shells is used. The solution is represented in the form of trigonometric series. It is shown that short-and medium-length shells with cylindrical panels are advantageous over circular shells. By selecting appropriate parameters of the panels, keeping the mass of the shell constant, it is possible to achieve a significant gain in critical loads. The shells under consideration are less effective than isotropic shells. Shells with sinusoidal corrugation under external pressure are of no practical interest __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 12, pp. 91–102, December 2007.  相似文献   

10.
Detailed experimental studies are performed on the postbuckling behavior of circular cylindrical shells under hydrostatic pressure, by using lap-jointed polyester test cylinders with radius 100 mm, thickness 0.25 mm and lengths ranging from 23 to 165 mm. Connections of the edge shortening and radial displacement with applied pressures as well as wave forms for typical postbuckling configurations are determined for various values of the shell curvature parameterZ ranging from 20 to 1000. It is found that the buckling pressure and the corresponding wave number for each cylinder compare favorably with those theoretically predicted, and that the minimum pressure after buckling decreases with the increase inZ, until it becomes about 70 percent of the theoretical buckling pressure for long shells withZ greater than 200.  相似文献   

11.
采用声固耦合方法对夹芯圆柱壳和等质量的普通圆柱壳在爆炸载荷作用下的应变、速度和加速度进行有限元计算。结果表明:夹芯防护层对爆炸冲击波可起到较好的衰减作用,即通过芯层的塑性变形,耗散了冲击过程中产生的大部分能量,对里面的圆柱壳体起到较好的保护作用,由于夹芯防护层的存在,与等质量的普通圆柱壳相比,夹芯圆柱壳能够承受更强的爆炸冲击波,降低结构的整体变形。  相似文献   

12.
Based on the boundary layer theory for the buckling of thin elastic shells suggested in ref. [14]. the buckling and postbuckling behavior of clamped circular cylindrical shells under lateral or hydrostatic pressure is studied applying singular perturbation method by taking deflection as perturbation parameter. The effects of initial geometric imperfection are also considered. Some numerical results for perfect and imperfect cylindrical shells are given. The analytical results obtained are compared with some experimental data in detail, which shows that both are rather coincident.  相似文献   

13.
 利用时间平均法分别拍摄了含轴向和环向裂纹圆柱薄壳的激光 全息振型图,讨论了裂纹对圆柱薄壳振型及固有频率的影响,把含裂 纹壳体的振型分为三个区,即:裂纹周围的局部振动区,壳体原振动 区和过渡区. 并着重分析了局部振动的特征,得出了局部振动有着自 己的独有振形和固有频率的结论,从而很好解释了含裂纹圆柱薄壳的 复杂振型图及固有频率的反常变化.  相似文献   

14.
考虑材料损伤累积单层柱面网壳在强震下的失效研究   总被引:12,自引:2,他引:10  
采用考虑钢材损伤累积的本构模型,对跨度15米单层柱面网壳在强震下的失效进行了系统的研究。在大量算例的基础上,考察了屋面质量、矢跨比、初始几何缺陷和长宽比等结构几何参数的变化对柱面网壳失效特征和失效极限荷载的影响,探讨了结构的强震失效模式及失效机理。对大量强度破坏算例在失效时刻的特征响应进行统计分析,建立了考虑材料损伤累积的单层柱面网壳动力损伤模型,可对结构在不同荷载强度下的损伤程度进行评估;提出了单层柱面网壳强震失效判别准则,用于判别单层柱面网壳在强震下的失效极限荷载。  相似文献   

15.
This paper contains an extensive global treatment of radial motions of compressible nonlinearly viscoelastic cylindrical and spherical shells under time-dependent pressures. It furnishes a variety of conditions on a general class of material properties and on the pressure terms ensuring that there are solutions existing for all times, there are unbounded globally defined solutions, there are solutions that blow up in finite time, and there are solutions having the same period as that of the pressure terms. The shells are described by a geometrically exact 2-dimensional theory in which the shells suffer thickness strains as well as the standard stretching of their base surfaces. Consequently their motions are governed by fourth-order systems of semilinear ordinary differential equations. This work shows that there are major qualitative differences between the nonlinear dynamical behaviors of cylindrical and spherical shells.   相似文献   

16.
The infinitesimal stability of the equilibrium states of an arbitrary incompressible, isotropic and homogeneous elastic cylindrical shell in a pure radial expansion under a constant inflation pressure is studied for both thick- and thin-walled shells. The classical criterion of infinitesimal stability yields a general stability theorem relating the frequency and pressure response and reveals that points at which the pressure is stationary define the domain of unstable or neutrally stable states. All results are expressed in terms of a general shear response function, and specific results are provided for the Mooney-Rivlin, Gent and Ogden models, the second having limited extensibility, the last including experimental data. Every static state of a Mooney-Rivlin tube is stable so long as the pressure is less than an asymptotic limit that increases with the thickness. Otherwise, only the Ogden model exhibits static states of instability for all long cylindrical tubes of thickness less than a transitional value above which all static states are infinitesimally stable. A long cylindrical cavity in all three unbounded models is stable for all pressures. All results are illustrated graphically.  相似文献   

17.
The nonlinear large deflection theory of cylindrical shells is extended to discuss nonlinear buckling and postbuckling behaviors of functionally graded (FG) cylindrical shells which are synchronously subjected to axial compression and lateral loads. In this analysis, the non-linear strain-displacement relations of large deformation and the Ritz energy method are used. The material properties of the shells vary smoothly through the shell thickness according to a power law distribution of the volume fraction of the constituent materials. Meanwhile, by taking the temperature-dependent material properties into account, various effects of external thermal environment are also investigated. The non-linear critical condition is found by defining the possible lowest point of external force. Numerical results show various effects of the inhomogeneous parameter, dimensional parameters and external thermal environments on non-linear buckling behaviors of combine-loaded FG cylindrical shells. In addition, the postbuckling equilibrium paths are also plotted for axially loaded pre-pressured FG cylindrical shells and there is an interesting mode jump exhibited.  相似文献   

18.
The buckling problem for longitudinally corrugated cylindrical shells under external pressure is solved. The solution makes practically exact allowance for the geometry and buckling modes of the shell. The inaccuracy of the results is due to the assumption that the subcritical state is momentless. Shells consisting of cylindrical panels of smaller radius and noncircular shells with sinusoidal corrugations are analyzed for stability. The practical applicability of such shells is demonstrated __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 11, pp. 66–79, October 2007.  相似文献   

19.
Based on the nonlinear large deflection theory of cylindrical shells, this paper deals with the nonlinear buckling problem of functionally graded cylindrical shells under torsion load by using the energy method and the nonlinear strain–displacement relations of large deformation. The material properties of the functionally graded shells vary smoothly through the shell thickness according to a power law distribution of the volume fraction of the constituent materials. Meanwhile, on the base of taking the temperature-dependent material properties into account, various effects of external thermal environment on the critical state of the shell are also investigated. Numerical results show various effects of the inhomogeneous parameter, the dimensional parameters and external thermal environment on nonlinear buckling of functionally graded cylindrical shells under torsion. The present theoretical results are verified by those in literature.  相似文献   

20.
Simplified equations are derived for the analysis of stress concentration for shear-deformable shallow shells with a small hole.General solutions of the equations are obtained,in terms of series,for shallow spherical shells and shallow circular cylindrical shells with asmall circular hole.Approximate explicit solutions and numerical results are obtianed forthe stress concentration factors of shallow circular cylindrical shells with a small hole onwhich uniform pressure is acting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号