首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
A rotating ellipsoid composed of an orthotropic piezoelectric material (2mm) are considered, and the stress and electric displacement fields in this rotating ellipsoid are obtained exactly and completely. The solutions of the same problem for transversely isotropic piezoelectric material (6 mm) are also given by degenerating above results. At last, numerical examples for four kinds of media are illustrated in figures for comparison. Supported by the National Natural Science Foundation of China (No. 19872060).  相似文献   

2.
A new yield criterion is proposed for transversely isotropic solid foams. Its derivation is based on the hypothesis that the yielding in foams is driven by the total strain energy density, rather than a completely phenomenological approach. This allows defining the yield surface with minimal number of parameters and does not require complex experiments. The general framework used leads to the introduction of new scalar measures of stress and strain (characteristic stress and strain) for transversely isotropic foams. Furthermore, the central hypothesis that the total strain energy density drives yielding in foams ascribes to the characteristic stress an analogous role of von Mises stress in metal plasticity. Unlike the overwhelming majority of yield models in literature the proposed model recognizes the tension–compression difference in yield behavior of foams through a linear mean stress term. Predictions of the proposed yield model are in excellent agreement with the results of uniaxial, biaxial and triaxial FE analyses implemented on both isotropic and transversely isotropic Kelvin foam models.  相似文献   

3.
Based on the basic equations for axisymmetric problems of transversely isotropic elastic materials, the displacement components are expressed in terms of polynomials of the radial coordinate with the five involved coefficients, named as displacement functions in this paper, being undetermined functions of the axial (thickness) coordinate. Five equations governing the displacement functions are then derived. It is shown that the displacement functions can be found through progressive integration by incorporating the boundary conditions. Thus a three-dimensional analytical solution is obtained for a transversely isotropic functionally graded disc rotating at a constant angular velocity.The solution can be degenerated into that for an isotropic functionally graded rotating disc. A prominent feature of this solution is that the material properties can be arbitrary functions of the axial coordinate. Thus, the solution for a homogeneous transversely isotropic rotating disc is just a special case that can be easily derived. An example is finally considered for a special functionally graded material, and numerical results shows that the material inhomogeneity has a remarkable effect on the elastic field.  相似文献   

4.
This paper deals with a two dimensional problem for a transversely isotropic thick plate having heat source. The upper surface of the plate is stress free with prescribed surface temperature while the lower surface of the plate rests on a rigid foundation and is thermally insulated. The study is carried out in the context of generalized thermoelasticity proposed by Green and Naghdi. The governing equations for displacement and temperature fields are obtained in Laplace–Fourier transform domain by applying Laplace and Fourier transform techniques. The inversion of double transform has been done numerically. The numerical inversion of Laplace transform is done by using a method based on Fourier Series expansion technique. Numerical computations have been done for magnesium (Mg) and the results are presented graphically. The results for an isotropic material (Cu) have been deduced numerically and presented graphically to compare with those of transversely isotropic material (Mg).  相似文献   

5.
The Boussinesq problem, that is, determining the deformation in a hyperelastic half-space due to a point force normal to the boundary, is an important problem of engineering, geomechanics, and other fields to which elasticity theory is often applied. While linear solutions produce useful Greens functions, they also predict infinite displacements and other physically inconsistent results nearby and at the point of application of the load where the most critical and interesting material behavior occurs. To illuminate the deformation due to such a load in the region of interest, asymptotic analysis of the nonlinear Boussinesq problem has been considered in the context of isotropic hyperelasticity. Studies considering transversely isotropic materials have also been broadly used in the linear theory, but have not been treated within the nonlinear framework. In this paper we extend the nonlinearly elastic isotropic analysis to transverse isotropy, producing a more general theory which also better encompasses applications involving layered media. The governing equations for nonlinearly elastic, transversely isotropic solids are derived, conservation laws of elastostatics are invoked, asymptotic forms of the deformation solutions are hypothesized, and the differential equations governing deformation near the point load are determined. The analysis also develops sequences of simple tests to determine if a transversely isotropic material can possibly sustain a finite deflection under the point load. The results are applied to a variety of transversely isotropic materials, and the effects of the anisotropy considered is demonstrated by comparison of the resulting deformation with similar asymptotic solutions in the isotropic theory. Mathematics Subject Classifications (2000) 74B20, 74E10, 74G10, 74G15, 74G70.  相似文献   

6.
IntroductionMechanicsandphysicsofmediapossessingsimultaneouslypiezoelectric ,piezomagneticandmagnetoelectriceffects ,namely ,magnetoelectroelasticsolids,haveattractedmoreandmoreattentionduetotheirgreatpotentialapplicationsinthetechnologiesofsmartandadaptivematerialsystem[1] .Sometheoreticalinvestigationsappearedintheliteratureinclude :1)Theexistenceproblemofsurfacewavesinsemi_infiniteanisotropicmagnetoelectroelasticmediawithvariousboundaryconditions[2 ,3 ] ;2 )Green’sfunctions[4~ 7] ;3)Inho…  相似文献   

7.
Microstructures possessing local spherical anisotropy are considered in this paper. An example is a spherulitic polymer which can be modelled by an assemblage of spheres of all sizes in which a radial direction in every sphere is an axis of local transverse isotropy. Our purpose is to construct effectively isotropic microstructures, with spherically anisotropic and thermoelastic constituents, whose effective bulk modulus, thermal stress and specific heat can be exactly determined. The basic microstructure for which this is achieved in the present paper is the nested composite sphere assemblage of Milgrom and Shtrikman (J. Appl. Phys. 66 (1989) 3429) which was originally formulated for isotropic constituents, in the settings of conductivity and coupled fields with scalar potentials. Here, we allow the phases of this microstructure to be spherically thermoelastic with a symmetry class which can be trigonal, tetragonal, transversely isotropic, cubic or isotropic with respect to a local spherical coordinate system. A rich class of new exact results for two-phase composites and polycrystals are obtained.  相似文献   

8.
侯宇  何福保 《力学季刊》1995,16(2):102-108
本文用三维弹性力学理论研究绕径旋转横观各向同性圆球壳的变形和应力分布,给出任意厚度圆球壳的位移和应务的封闭形式解以及数值结果。研究表明球壳上的位移和应力大小与旋转角速度的平方成正比,球面内的正应力远大于径向正应力和剪应力。  相似文献   

9.
Green’s functions of a transversely isotropic half-space overlaid by a thin coating layer are analytically obtained. The surface coating is modeled by a Kirchhoff thin plate perfectly bonded to the half-space. With the aid of superposition technique and employing appropriate displacement potential functions, the Green’s functions are expressed in two parts; (i) a closed-form part corresponding to the transversely isotropic half-space with surface kinematic constraints, and (ii) a numerically evaluated part reflecting the interaction between the half-space and the plate in the form of semi-infinite integrals. Some limiting cases of the problem such as surface-stiffened isotropic half-space, Boussinesq and Cerruti loadings, and extremely flexible and rigid plates are also studied. For the classical Cerruti problem in transversely isotropic materials, the effects of incompressibility are highlighted. Numerical results are provided to show the effects of material anisotropy, relative stiffness factor, and load buried depth. The obtained Green’s functions play a key role in treating further mixed-boundary-value problems in surface stiffened transversely isotropic half-spaces.  相似文献   

10.
A method is proposed for determining the thermoelastoplastic stress–strain state of laminated shells of revolution, made of isotropic and transversely isotropic materials, under axisymmetric loading. The method is based on the Kirchhoff–Love hypotheses for a layer stack, the theory of deformation along paths of small curvature for isotropic materials, and Hill's flow theory with isotropic hardening for transversely isotropic materials. The loading history is accounted for. The problem is solved by the method of successive approximations. Numerical examples are given  相似文献   

11.
Based on the three-dimensional elasticity equations, this paper studies the elastic bending response of a transversely isotropic functionally graded solid circular plate subject to transverse biharmonic forces applied on its top surface. The material properties can continuously and arbitrarily vary along the thickness direction. By virtue of the generalized England’s method, the problem can be solved by determining the expressions of four analytic functions. Expanding the transverse load in Fourier series along the circumferential direction eases the theoretical construction of the four analytic functions for a series of important biharmonic loads. Certain boundary conditions are then used to determine the unknown constants that are involved in the four constructed analytic functions. Numerical examples are presented to validate the proposed method. Then, we scrutinize the asymmetric bending behavior of a transversely isotropic functionally graded solid circular plate with different geometric and material parameters.  相似文献   

12.
In this paper the equations governing small amplitude motions in a rotating transversely isotropic initially stressed elastic solid are derived, both for compressible and incompressible linearly elastic materials. The equations are first applied to study the effects of initial stress and rotation on the speed of homogeneous plane waves propagating in a configuration with uniform initial stress. The general forms of the constitutive law, stresses and the elasticity tensor are derived within the finite deformation context and then summarized for the considered transversely isotropic material with initial stress in terms of invariants, following which they are specialized for linear elastic response and, for an incompressible material, to the case of plane strain, which involves considerable simplification. The equations for two-dimensional motions in the considered plane are then applied to the study of Rayleigh waves in a rotating half-space with the initial stress parallel to its boundary and the preferred direction of transverse isotropy either parallel to or normal to the boundary within the sagittal plane. The secular equation governing the wave speed is then derived for a general strain–energy function in the plane strain specialization, which involves only two material parameters. The results are illustrated graphically, first by showing how the wave speed depends on the material parameters and the rotation without specifying the constitutive law and, second, for a simple material model to highlight the effects of the rotation and initial stress on the surface wave speed.  相似文献   

13.
The zero approximation of the ray-path method is used to construct the discontinuity fronts of stress–strain fields and to determine the displacement velocity in a transversely isotropic medium, which evolves when a nonstationary force acts on the surface of the ellipsoidal cavity.  相似文献   

14.
We use the compact harmonic general solutions of transversely isotropic thermoelastic materials to construct the three-dimensional fundamental solutions for a steady point heat source in an infinite transversely isotropic thermoelastic material and a steady point heat source on the surface of a semi-infinite transversely isotropic thermoelastic material by three newly introduced harmonic functions, respectively. All components of coupled field are expressed in terms of elementary functions and are convenient to use. Numerical results for hexagonal zinc are given graphically by contours.  相似文献   

15.
地基土形成过程中由于沉积作用大多具有横观各向同性的特点.利用数学、力学手段,采用坐标转换矩阵的方法,对横观各向同性地基的本构模型和模型中参数的选取作了一定的理论研究,可由横观各向同性面水平情况下的地基的本构方程直接推导出横观各向同性面倾斜情况下的地基的本构方程,而所需测的力学参数仍为垂直和平行横观各向同性面方向上的力学参数,数量没有增加,简单易用.得出了一些有益于工程实践的结论.所述理论可以解释地应力的水平应力分量不等的量测结果,同时由于考虑了地基土形成过程中的沉积作用,利用该本构模型计算地基在外荷作用下的应力、应变的响应问题,比均质各向同性理论更加符合实际情况.  相似文献   

16.
This paper presents a three-dimensional elasticity solution for a simply supported, transversely isotropic functionally graded plate subjected to transverse loading, with Young’s moduli and the shear modulus varying exponentially through the thickness and Poisson’s ratios being constant. The approach makes use of the recently developed displacement functions for inhomogeneous transversely isotropic media. Dependence of stress and displacement fields in the plate on the inhomogeneity ratio, geometry and degree of anisotropy is examined and discussed. The developed three-dimensional solution for transversely isotropic functionally graded plate is validated through comparison with the available three-dimensional solutions for isotropic functionally graded plates, as well as the classical and higher-order plate theories.  相似文献   

17.
The present paper is concerned with three-dimensional (3D) coupled field in a transversely isotropic magneto-electro-elastic half space punched by a rigid flat-ended elliptic indenter. Closed form solutions and corresponding numerical results are presented in this work, in a systematic manner. The material in question is transversely isotropic with the axis of symmetry normal to the surface of the half space. The indenter is assumed to be either electrically and magnetically conducting or insulating. Corresponding boundary integral equations (BIEs), to indenter with different magneto-electric properties, are solved by virtue of the method of generalized potential theory. For all four physical cases, corresponding coupled magneto-electro-elastic fields in the half space are obtained. The present analytical solutions indicate that the indentation forces and stiffness may be written as intrinsic combinations of a physical factor and a geometrical factor. The present study is an extension of the previous work on circular punch, and may find applications in guiding future indentation experiments.  相似文献   

18.
Problems of inelastic straining of three-dimensional bodies with large displacements and turns are considered. In addition to the sought fields, surface forces and boundary displacements have also to be determined in these problems. Experimental justification is given to the proposed constitutive equations of steady creep for transversely isotropic materials with different characteristics under tension and compression. Algorithms and results of the finite-element solution of the problem are presented for these materials.  相似文献   

19.
This paper describes the results of calculations and experiments on the torsion of plates made of isotropic and transversely isotropic VT-20 and 1163T alloys with low resistance to creep strain in the direction perpendicular to the median surface. The numerical simulation results for plates of different thicknesses related to the class of rigid and flexible plates are compared using the pure bending theory and the finite element method. It is found that the curvature values are smaller in the case of deformation of a plate made of anisotropic material into a sign-variable saddle surface than in the case of a plate of isotropic material. The calculation in the assumption of pure bending provides an upper bound of the curvature difference in the deformation of plates made of transversely isotropic and isotropic materials.  相似文献   

20.
The singular characteristics of stress, electric displacement and magnetic induction fields near the tip of impermeable interracial cracks in two-dimensional magnetoelectroelastic bimaterials are studied using the generalized Stroh formalism. Two types of singularities are obtained: one is the oscillating singularity 1/2±iε, the other is the non-oscillating singularity 1/2±κ. It is found that the non-zero parameters ε and κ cannot coexist for one transversely isotropic MEE bimaterial, a similar result is obtained for transversely isotropic piezoelectric bimaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号