首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many materials contain inhomogeneities or inclusions that may greatly affect their mechanical properties. Such inhomogeneities are for example encountered in the case of composite materials or materials containing precipitates. This paper presents an analysis of contact pressure and subsurface stress field for contact problems in the presence of anisotropic elastic inhomogeneities of ellipsoidal shape. Accounting for any orientation and material properties of the inhomogeneities are the major novelties of this work. The semi-analytical method proposed to solve the contact problem is based on Eshelby’s formalism and uses 2D and 3D Fast Fourier Transforms to speed up the computation. The time and memory necessary are greatly reduced in comparison with the classical finite element method. The model can be seen as an enrichment technique where the enrichment fields from the heterogeneous solution are superimposed to the homogeneous problem. The definition of complex geometries made by combination of inclusions can easily be achieved. A parametric analysis on the effect of elastic properties and geometrical features of the inhomogeneity (size, depth and orientation) is proposed. The model allows to obtain the contact pressure distribution – disturbed by the presence of inhomogeneities – as well as subsurface and matrix/inhomogeneity interface stresses. It is shown that the presence of an inclusion below the contact surface affects significantly the contact pressure and subsurfaces stress distributions when located at a depth lower than 0.7 times the contact radius. The anisotropy directions and material data are also key elements that strongly affect the elastic contact solution. In the case of normal contact between a spherical indenter and an elastic half space containing a single inhomogeneity whose center is located straight below the contact center, the normal stress at the inhomogeneity/matrix interface is mostly compressive. Finally when the axes of the ellipsoidal inclusion do not coincide with the contact problem axes, the pressure distribution is not symmetrical.  相似文献   

2.
This paper presents a two-dimensional contact stress analysis to investigate the effects of multiple inclusions on the contact pressure and subsurface stresses in an elastic half-plane. The boundary element method is used to analyze the contact problem where a set of integral equations is derived on the contact region and the matrix–inclusion interfaces. As the contact region is unknown a priori, an iterative procedure is implemented to determine the actual contact region and the contact pressure, and the tractions and displacements on the matrix–inclusion interfaces are obtained by solving the integral equations numerically. Numerical results show that the inclusions near contact surface could cause significant alterations in the contact pressure distribution. The stiff inclusions could toughen the surrounding material and reduce the internal stresses while the soft inclusions could increase the subsurface stresses.  相似文献   

3.
This paper presents a fast method of solving contact problems when one of the mating bodies contains multiple heterogeneous inclusions, and numerical results are presented for soft or stiff inhomogeneities. The emphasis is put on the effects of spherical inclusions on the contact pressure distribution and subsurface stress field in an elastic half-space. The computing time and allocated memory are kept small, compared to the finite element method, by the use of analytical solution to account for the presence of inhomogeneities. Eshelby’s equivalent inclusion method is considered in the contact solver. An iterative process is implemented to determine the displacements and stress fields caused by the eigenstrains of all spherical inclusions. The proposed method can be seen as an enrichment technique for which the effect of heterogeneous inclusions is superimposed on the homogeneous solution in the contact algorithm. 3D and 2D Fast Fourier Transforms are utilized to improve the computational efficiency. Configurations such as stringer and cluster of spherical inclusions are analyzed. The effects of Young’s modulus, Poisson’s ratio, size and location of the inhomogeneities are also investigated. Numerical results show that the presence of inclusions in the vicinity of the contact surface could significantly changes the contact pressure distribution. From a numerical point of view the role of Poisson’s ratio is found very important. One of the findings is that a relatively ‘soft’ and nearly incompressible inclusion – for example a cavity filled with a liquid – can be more detrimental for the stress state within the matrix than a very hard inclusion with a classical Poisson’s ratio of 0.3.  相似文献   

4.
We solve the problem of determining the stress-strain state of an anisotropic plate with an elliptic hole and a system of thin rectilinear elastic inclusions. We assume that there is a perfect mechanical contact between the inclusions and the plate. We deal with a more precise junction model with the flexural rigidity of inclusions taken into account. (The tangential and normal stresses, as well as the derivatives of the displacements, experience a jump across the line of contact.) The solution of the problem is constructed in the form of complex potentials automatically satisfying the boundary conditions on the contour of the elliptic hole and at infinity. The problem is reduced to a system of singular integral equations, which is solved numerically. We study the influence of the rigidity and geometry parameters of the elastic inclusions on the stress distribution and value on the contour of the hole in the plate. We also compare the numerical results obtained here with the known data.  相似文献   

5.
The problem of the distribution of contact stresses resulting from the interaction between a journal and its bearing was considered in [1]. This paper deals with the problem of temperature distribution in the area of contact of a rotating cylindrical shaft and a bearing. The process is assumed to be stabilized.The problem reduces to an integral equation with respect to the contact temperature at the shaft surface.An approximate method is proposed for solving the integral equation which had permitted the derivation of a simple approximate formula for the contact temperature within any range of variation of the parameters of this problem.  相似文献   

6.
In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal shape, the later being of any orientation relatively to the contact surface. The model presented here is three dimensional and based on semi-analytical methods. In order to take into account the viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal dimensions. The frictionless rolling of the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is applied at each step of the temporal discretization to account for the effect of the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to reduce the computation cost. The model is validated by a finite element model of a rigid sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison with reference solutions from the literature. A parametric analysis of the effect of elastic properties and geometrical features of the inhomogeneity is performed. Transient and steady-state solutions are obtained. Numerical results about the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are presented, with or without heterogeneous inclusion.  相似文献   

7.
The paper outlines an approach to the analysis of periodically inhomogeneous composites with imperfect contact between the components. The heat-conduction problem for a particulate composite with an infinite matrix and simple cubic lattices of spherical inclusions is solved. Approximate solutions for the effective heat-conductivity coefficient and local heat fluxes at the microlevel are found. The results are obtained for arbitrary conductivity and volume fractions of the components  相似文献   

8.
This paper investigates the plane problem of a frictional receding contact formed between an elastic functionally graded layer and a homogeneous half space, when they are pressed against each other. The graded layer is assumed to be an isotropic nonhomogeneous medium with an exponentially varying shear modulus and a constant Poisson’s ratio. A segment of the top surface of the graded layer is subject to both normal and tangential traction while rest of the surface is devoid of traction. The entire contact zone thus formed between the layer and the homogeneous medium can transmit both normal and tangential traction. It is assumed that the contact region is under sliding contact conditions with the Coulomb’s law used to relate the tangential traction to the normal component. Employing Fourier integral transforms and applying the necessary boundary conditions, the plane elasticity equations are reduced to a singular integral equation in which the unknowns are the contact pressure and the receding contact lengths. Ensuring mechanical equilibrium is an indispensable requirement warranted by the physics of the problem and therefore the global force and moment equilibrium conditions for the layer are supplemented to solve the problem. The Gauss–Chebyshev quadrature-collocation method is adopted to convert the singular integral equation to a set of overdetermined algebraic equations. This system is solved using a least squares method coupled with a novel iterative procedure to ensure that the force and moment equilibrium conditions are satisfied simultaneously. The main objective of this paper is to study the effect of friction coefficient and nonhomogeneity factor on the contact pressure distribution and the size of the contact region.  相似文献   

9.
The problem of a two-dimensional viscous fluid drop which steadily moves along a horizontal rigid surface is considered. Such motion arises if the rigid surface wettability is nonuniform. A sequence of solutions for the velocity field and the free surface shape with the successively increasing applicability region near the moving contact lines is obtained for small capillary numbers Ca. The solution of the problem is found in the case when the distortion of the free surface of the drop during motion can be neglected. The problem is then reformulated using functions of a complex variable and expanded variables are introduced. In the new variables a more accurate solution of the same problem is found, with a much more narrow inapplicability region near the moving contact lines. In the solution obtained the free surface approaches the receding contact line at an angle of 180° and the advancing line at a zero angle. The solution is applicable up to the receding contact line and here approaches the known asymptotics. Near the advancing contact line the solution is applicable until the angle between the free surface and the rigid substrate becomes of the order of Ca1/3.  相似文献   

10.
The optimization problem for the contact interaction between a rigid punch and an elasticmediumis considered. It is assumed that that the punch is under the action of some prescribed forces and momenta and moves along a surface bounding a half-space filled with an elastic medium. It is also assumed that themotion is quasistatic and the friction forces arising in the region of contact are taken into account. The punch shape is considered as the desired design variable, and the integral functional characterizing the discrepancy between the pressure distribution in the region of contact that corresponds to the optimized shape of the punch and a given goal distribution of pressure is taken as the minimizing criterion. The optimal shape can be determined efficiently by solving the following two problems: first, to obtain the optimal pressure distribution and then to solve a boundary value problemfor the elastic half-space under the action of the obtained normal pressure and friction forces. By way of example, the optimal shape is analytically determined for a punch of rectangular shape in horizontal projection.  相似文献   

11.
In this paper, we consider the plane problem of a frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a nonhomogeneous medium with an isotropic stress–strain law and over a certain segment of its top surface is subjected to normal tractions while the rest of this surface is free of tractions. Since the contact between the two bodies is assumed to be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using integral transforms, the plane elasticity equations are converted analytically into a singular integral equation in which the unknowns are the contact pressure and the receding contact half-length. The global equilibrium condition of the layer is supplemented to solve the problem. The singular integral equation is solved numerically using Chebychev polynomials and an iterative scheme is employed to obtain the correct receding contact half-length that satisfies the global equilibrium condition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thickness of the graded layer on the contact pressure and on the length of the receding contact.  相似文献   

12.
考虑接触应力非线性分布的接触力元模式及其验证分析   总被引:1,自引:0,他引:1  
在作者提出的非连续变形计算力学模型中,采用接触力元模型描述多体接触界面上的接触特性.由于这种模型中假定接触应力沿接触界面为线性分布,从而得到的接触界面应力分布往往出现跳跃等非光滑性特征,该文对此进行了改进,采用具有高阶光滑性的非线性函数建立了能够考虑界面上接触应力非线性分布的接触力元模式,以期合理地揭示多体系统中界面的接触特性.对某一典型算例进行了数值计算,通过与大型通用非线性有限元结构分析软件ABASQUS的计算结果对比,验证了所建议计算模型的合理性与有效性.两种方法计算得到的界面接触对上的接触力基本相同;而由于采用的应力分布模式的假定不同,接触应力有所差别,由于在该文计算模型中接触对上的接触应力是按照未知量直接求得的,因此按照所建议的非线性接触力元模式所得到的接触应力更为合理.  相似文献   

13.
A contact problem is solved for an infinite anisotropic plate weakened by a circular opening, stiffened by inclusions of variable stiffness, and subjected to bending. For the unknown contact force of interaction between the plate and an inclusion, an integro-differential equation is derived and then reduced to an infinite system of linear algebraic equations. The system is analyzed for regularity.  相似文献   

14.
基于经典的复合材料层板理论,将有限大复合材料层板等效成各向异性弹性平板。采用复变函数理论中的Faber级数分析方法,使用最小二乘边界配点法,对含多椭圆刚性核有限大各向异性板弯曲问题进行应力分析,得到了该问题的级数解形式,分析了含椭圆刚性核层板在弯曲载荷下的应力分布,并讨论了形状和结构参数对应力分布的影响。结果表明,本文方法对于分析含多个椭圆形刚性核有限大薄板弯曲应力问题非常有效,该方法具有精度高及计算方便等优点。  相似文献   

15.
The analytic solution of the problem of forced vibrations of a rigid body with cylindrical surface on a horizontal foundation is given. It is assumed that the dry friction force acts at the point of contact between the cylindrical surface of the body and the foundation and the foundation moves by a harmonic law in the horizontal direction perpendicularly to the cylindrical surface element. The averaging method is used to determine the forced vibration mode near the natural frequency of the body vibrations on the fixed foundation. The results are presented as amplitude-frequency and phase-frequency characteristics.  相似文献   

16.
The frictionless contact problem of a functionally graded piezoelectric layered half-plane in-plane strain state under the action of a rigid flat or cylindrical punch is investigated in this paper. It is assumed that the punch is a perfect electrical conductor with a constant potential. The electro-elastic properties of the functionally graded piezoelectric materials (FGPMs) vary exponentially along the thickness direction. The problem is reduced to a pair of coupled Cauchy singular integral equations by using the Fourier integral transform technique and then is numerically solved to determine the contact pressure, surface electric charge distribution, normal stress and electric displacement fields. For a flat punch, the normal stress intensity factor and electric displacement intensity factor are also given to quantitatively characterize the singularity behavior at the punch ends. Numerical results show that both material property gradient of the FGPM layer and punch geometry have a significant influence on the contact performance of the FGPM layered half-plane.  相似文献   

17.
The problem of thermoelastic contact mechanics for the coating/substrate system with functionally graded properties is investigated, where the rigid flat punch is assumed to slide over the surface of the coating involving frictional heat generation. With the coefficient of friction being constant, the inertia effects are neglected and the solution is obtained within the framework of steady-state plane thermoelasticity. The graded material exists as a nonhomogeneous interlayer between dissimilar, homogeneous phases of the coating/substrate system or as a nonhomogeneous coating deposited on the substrate. The material nonhomogeneity is represented by spatially varying thermoelastic moduli expressed in terms of exponential functions. The Fourier integral transform method is employed and the formulation of the current thermoelastic contact problem is reduced to a Cauchy-type singular integral equation of the second kind for the unknown contact pressure. Numerical results include the distributions of the contact pressure and the in-plane component of the surface stress under the prescribed thermoelastic environment for various combinations of geometric, loading, and material parameters of the coated medium. Moreover, in order to quantify and characterize the singular behavior of contact pressure distributions at the edges of the flat punch, the stress intensity factors are defined and evaluated in terms of the solution to the governing integral equation.  相似文献   

18.
Mathematical formulation is performed and a solution is found for a quasi-static thermoelastic problem of contact interaction of an elastic shroud ring and a hollow circular cylinder inserted into this ring, which are compressed by a load varied along the axis of the system, under the condition of an unloaded contact over the ring surface or over the circumference contour. The radial displacements of the contact surface of the shroud ring are approximated by displacements of the surface of a long circular hollow cylinder. Unsteady friction-induced heat release caused by the action of friction forces owing to shroud ring rotation over the cylinder with a time-dependent low angular velocity is taken into account. The problem is reduced to a system of integral equations whose structure is determined by the form of thermophysical contact conditions. A numerical algorithm of the solution is proposed, and the influence of the problem parameters on the contact pressure and temperature distributions is considered. Based on an analysis of results, a conclusion is made that the character of axial variation of the compressing load has a significant effect on the distribution of contact pressure in describing the kinematic condition of interaction of bodies in accordance with Hertz’s theory.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 4, pp. 161–178, July– August, 2005.  相似文献   

19.
Xue-Qian Fang 《Meccanica》2011,46(5):1113-1126
In this study, a theoretical method is applied to investigate the multiple scattering of flexural waves from two cylindrical inclusions and dynamic stress in a semi-infinite thin plate, and the roller-supported boundary at the semi-infinite edge is considered. A computationally efficient approach utilizing the wave expansion method together with the image method is employed to formulate the problem. The addition theorem for Bessel functions is employed to accomplish the translation of wave fields between different local coordinate systems. The scattered far field amplitudes of the two inclusions are presented. Through numerical examples and analyses, it is found that the angular distribution of the dynamic stress around the inclusions shows a great difference when the positions of two inclusions vary. The effects of the elastic modulus, density, Poisson’s ratio of the inclusions on the dynamic stress are closely related to the distance between the inclusions and the semi-infinite edge and the distance between the two inclusions. The thickness and Poisson’s ratio of the inclusions show little effect on the dynamic stress. Comparisons with other existing models are also discussed.  相似文献   

20.
Inhomogeneities can increase localized stress and cause microstructural alterations to initiate fatigue failures in rolling elements under cyclic contact loading. To study the stress disturbances created by the inhomogeneity, a two-dimensional contact stress analysis is presented for a cylindrical indenter sliding on an elastic half-space containing an inhomogeneity of arbitrary shape. The boundary element method is used to analyze the contact problem, where actual contact boundary, contact pressure as well as tractions and displacements at inhomogeneity–substrate interface are determined by solving a set of integral equations numerically. Numerical results are presented to investigate effects and the stress disturbances caused by the inhomogeneity with various locations, sizes and material properties of inhomogeneity. The results also show that hard inclusions are more detrimental than soft deformable particles in rolling contact elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号