首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we consider the plane problem of a frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a nonhomogeneous medium with an isotropic stress–strain law and over a certain segment of its top surface is subjected to normal tractions while the rest of this surface is free of tractions. Since the contact between the two bodies is assumed to be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using integral transforms, the plane elasticity equations are converted analytically into a singular integral equation in which the unknowns are the contact pressure and the receding contact half-length. The global equilibrium condition of the layer is supplemented to solve the problem. The singular integral equation is solved numerically using Chebychev polynomials and an iterative scheme is employed to obtain the correct receding contact half-length that satisfies the global equilibrium condition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thickness of the graded layer on the contact pressure and on the length of the receding contact.  相似文献   

2.
In this paper, we consider the axisymmetric problem of a frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a nonhomogeneous medium with an isotropic stress–strain law and is subjected over a part of its top surface to normal tractions while the rest of it is free of tractions. Since the contact between the two bodies is assumed to be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using Hankel transform, the axisymmetric elasticity equations are converted analytically into a singular integral equation in which the unknowns are the contact pressure and the receding contact radius. The global equilibrium condition of the layer is supplemented to solve the problem. The singular integral equation is solved numerically using orthogonal Chebychev polynomials and an iterative scheme is employed to obtain the correct receding contact length that satisfies the global equilibrium condition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thickness of the graded layer on the contact pressure and on the length of the receding contact.  相似文献   

3.
The frictional contact problem for a layer resting on a homogeneous half plane is handled using linear elasticity theory in this study. The layer is in contact with a rigid cylindrical stamp that is on the layer and applies a concentrated force in the normal and tangential directions. Friction between the component couples of layer–stamp and layer–half plane is taken into account. The problem is reduced to a system of singular integral equations, in which the contact pressures and the contact areas are the unknowns, and it is treated using Fourier transforms and the boundary conditions for the problem. The system of singular integral equations is solved numerically using the Gauss–Jacobi integration formula with equilibrium and consistency conditions. Numerical results for the contact pressures and the contact areas are given as a solution for both the frictional and the frictionless cases. This work is the first study that investigates the effect of friction on the receding contact problem of a layer and a half plane with two contact areas.  相似文献   

4.
研究Winker地基模型上功能梯度材料涂层在一刚性圆柱形冲头作用下的摩擦接触问题。功能梯度材料涂层表面作用有法线向和切线向集中作用力。假设材料非均匀参数呈指数形式变化,泊松比为常量,利用Fourier积分变换技术将求解模型的接触问题转化为奇异积分方程组,再利用切比雪夫多项式对所得奇异积分方程组进行数值求解。最后,给出了功能梯度材料非均匀参数、摩擦系数、Winker地基模型刚度系数及冲头曲率半径对接触应力分布和接触区宽度的影响情况。  相似文献   

5.
A continuous contact problem of functionally graded layer resting on an elastic semi-infinite plane, which is loaded with through two different blocks is addressed in this study. The elasticity theory and integral transformation techniques are used in solution of the problem. The problem is reduced to a system of singular integral equations, and solved numerically by the aid of appropriate Gauss–Chebyshev integration formula. It is assumed that the elastic semi-infinite homogeneous plane is isotropic and all surfaces are frictionless and continuous. The shear modulus and the mass density of the FG layer vary exponentially along the thickness direction.  相似文献   

6.
In this study, the frictional contact problem for a layer bonded to a homogeneous substrate is considered according to the theory of elasticity. The layer is indented by a rigid cylindrical stamp which is subjected to concentrated normal and tangential forces. The friction between the layer and the stamp is taken into account. The problem is reduced to a singular integral equation of the second kind in which the contact pressure function and the contact area are the unknown by using integral transform technique and the boundary conditions of the problem. The singular integral equation is solved numerically using both the Jacobi polynomials and the Gauss?CJacobi integration formula, considering equilibrium and consistency conditions. Numerical results for the contact pressures, the contact areas, the normal stresses, and the shear stresses are given, for both the frictional and the frictionless contacts.  相似文献   

7.
This paper considers a frictionless receding contact problem between an anisotropic elastic layer and an anisotropic elastic half plane, when the two bodies are pressed together by means of a rigid circular stamp. The problem is reduced to a system of singular integral equations in which the contact stresses and lengths are the unknown functions. Numerical results for the contact stresses and the contact lengths are given by depending on various fibre orientations.  相似文献   

8.
The contact problem of indentation of a pair of rigid punches with plane bases connected by an elastic beam into the boundary of an elastic half-plane is considered under the conditions of plane strain state. The external load is generated by lumped forces applied to the punches and a uniformly distributed normal load acting on the beam.It is assumed that the contact between the punch and the elastic half-plane can be described by L. A. Galin’s statement, i.e., it is assumed that the adhesion acts in the interior part of each of the contact regions and the tangential stresses obeying the Coulomb law act on their boundaries.With the symmetry taken into account, the problem is stated only for a single punch, and solving this problem is reduced to a system of four singular integral equations for the tangential and normal stresses in the adhesion region and the contact pressure in the sliding zones. The solution of the constitutive system together with three conditions of equilibrium of the system of punches connected by a beam is constructed by direct numerical integration by the method of mechanical quadratures.As a result of the numerical analysis, the contact stress distribution functions were constructed and the values of the sliding zones and the punch rotation angle were determined for various values of the geometric, elastic, and force characteristics.  相似文献   

9.
In this paper, we consider the elasto-static problem of an embedded crack in a graded orthotropic coating bonded to a homogeneous substrate subject to statically applied normal and tangential surface loading. The crack direction is parallel to the free surface. The coating is graded in the thickness direction and is orthogonal to the crack direction. This coating is modelled as a non-homogeneous medium with an orthotropic stress–strain law. The equivalent crack surface stresses are first obtained and substituted in the plane elasticity equations. Using integral transforms, the governing equations are converted into singular integral equations which are solved numerically to yield the displacement field as well as the crack-tip stress intensity factors. This study presents a complete theoretical formulation for the problem in the static case. A numerical predictive capability for solving the singular integral equations and computing the crack-tip stress intensity factors is proposed. Since the loading is compressive, a previously developed crack-closure algorithm is applied to avoid interpenetration of the crack faces. The main objective of the paper is to investigate the effects of the material orthotropy and non-homogeneity of the graded coating on the crack-tip stress intensity factors, with and without using the crack-closure algorithm, for the purpose of gaining better understanding on the behavior and design of graded coatings.  相似文献   

10.
Alinia  Yadolah  Asiaee  Ali  Hosseini-nasab  Mostafa 《Meccanica》2019,54(1-2):183-203

The rolling contact problem of a non-homogeneous layer is considered here. The graded layer possesses a variable elastic modulus with an exponential distribution. The Poisons ratio is assumed to be constant. A rigid cylindrical indenter is rolling over the surface of the graded layer with a constant velocity. First, the Navier equations of equilibrium are solved in the Fourier domain. Later, the boundary and the continuity conditions are satisfied in order to extract the governing singular integral equations. The numerical solution of the integral equations is provided by means of the Gauss–Chebyshev integration method. Finally, the sensitivity of the solution is analyzed for the effective parameters namely: the stiffness ratio, the layer thickness and the coefficient of friction. The results indicate that a minimum value of the coating thickness is required to alleviate the severe stress gradients in the critical locations. If the coating thickness decreases by a 50% then the Von Mises stress will increases about 20%. Also, a softening graded layer can result in a lower stress level over the interface which may enhance the bonding strength.

  相似文献   

11.
The frictionless contact problem of a functionally graded piezoelectric layered half-plane in-plane strain state under the action of a rigid flat or cylindrical punch is investigated in this paper. It is assumed that the punch is a perfect electrical conductor with a constant potential. The electro-elastic properties of the functionally graded piezoelectric materials (FGPMs) vary exponentially along the thickness direction. The problem is reduced to a pair of coupled Cauchy singular integral equations by using the Fourier integral transform technique and then is numerically solved to determine the contact pressure, surface electric charge distribution, normal stress and electric displacement fields. For a flat punch, the normal stress intensity factor and electric displacement intensity factor are also given to quantitatively characterize the singularity behavior at the punch ends. Numerical results show that both material property gradient of the FGPM layer and punch geometry have a significant influence on the contact performance of the FGPM layered half-plane.  相似文献   

12.
A multi-layered model for sliding frictional contact analysis of functionally graded materials (FGMs) with arbitrarily varying shear modulus under plane strain-state deformation has been developed. Based on the fact that an arbitrary curve can be approached by a series of continuous but piecewise linear curves, the FGM is divided into several sub-layers and in each sub-layers the shear modulus is assumed to be a linear function while the Poisson's ratio is assumed to be a constant. In the contact area, it is assumed that the friction is one of Coulomb type. With this model the fundamental solutions for concentrated forces acting perpendicular and parallel to the FGMs layer surface are obtained. Then the sliding frictional contact problem of a functionally graded coated half-space is investigated. The transfer matrix method and Fourier integral transform technique are employed to cast the problem to a Cauchy singular integral equation. The contact stresses and contact area are calculated for various moving stamps by solving the equations numerically. The results show that appropriate gradual variation of the shear modulus can significantly alter the stresses in the contact zone.  相似文献   

13.
In previous work about axisymmetric adhesive contact on power-law graded elastic materials, the contact interface was often assumed to be frictionless, which is, however, not always the case in practical applications. In order to elucidate the effect of friction and the coupling between normal and tangential deformations, in the present paper, the problem of a rigid punch with a parabolic shape in non-slipping adhesive contact with a power-law graded half-space is studied analytically via singular integral equation method. A series of closed-form analytical solutions, which include the frictionless and homogeneous solutions as special cases, are obtained. Our results show that, compared with the frictionless case, the interfacial friction tends to reduce the contact area and the indentation depth during adhesion. The magnitude of the coupling effect depends on both the Poisson ratio and the gradient exponent of the half-space. This effect vanishes for homogeneous incompressible as well as for linearly graded materials but becomes significant for auxetic materials with negative Poisson’s ratio. Furthermore, influence of mode mixity on the adhesive behavior of power-law graded materials, which was seldom touched in literature, is discussed in details.  相似文献   

14.
This paper focuses on the study of a frictional sliding contact problem between a homogeneous magneto-electro-elastic material (MEEM) and a perfectly conducting rigid flat punch subjected to magneto-electro-mechanical loads. The problem is formulated under plane strain conditions. Using Fourier transform, the resulting plane magneto-electro-elasticity equations are converted analytically into three coupled singular integral equations in which the main unknowns are the normal contact stress, the electric displacement and the magnetic induction. An analytical closed-form solution is obtained for the normal contact stress, electric displacement and magnetic induction distributions. The main objective of this paper is to study the effect of the friction coefficient and the elastic, electric and magnetic coefficients on the surface contact pressure, electric displacement and magnetic induction distributions for the case of flat stamp profile.  相似文献   

15.
In this paper, the fretting contact problem for two elastic solids with graded coatings is investigated. We assume a conventional axisymmetric Hertzian contact takes place between two elastic solids under the action of the normal pressure. The application of the torque produces an annulus of slip. It is assumed that the surface shear traction within the contact area is limited by Coulomb’s friction law and the torsion angel was produced within the central adhesion zone as a rigid body. The linear multi-layer model is used to model the functionally graded coating with arbitrarily varying shear modulus. This model divides the coating into a series of sub-layers with the elastic modulus varying linearly in each sub-layer and continuous on the sub-interfaces. By using the transfer matrix method and Hankel integral transform technique, this problem is formulated as the solution of the Cauchy singular integral equations. The contact tractions are calculated by solving the equations numerically. The results show that the appropriate gradual variation of the shear modulus can significantly alter the contact tractions. Therefore, graded coatings may have potential applications in improving the resistance to fretting contact damage at the contact surfaces.  相似文献   

16.
A plane steady problem of fracture mechanics for a burning deformable solid propellant attenuated by a crack-type cavity with a burning surface is considered. The crack-type cavity is assumed to have tip zones with bonds between the faces, and mixed boundary conditions are imposed on the propellant charge boundary. The problem of equilibrium of a propellant charge containing a crack-type cavity reduces to solving a system of nonlinear singular integrodifferential equations with a Cauchy-type kernel. Based on the solution obtained, the normal and tangential forces in the tip zones of the crack-type cavity are found. Local conditions determining stability (safety) of the solid propellant burning regime are found.  相似文献   

17.
To simulate buckling of nonuniform coatings, we consider the problem of an embedded crack in a graded orthotropic coating bonded to a homogeneous substrate subjected to a compressive loading. The coating is graded in the thickness direction and the material gradient is orthogonal to the crack direction which is parallel with the free surface. The elastic properties of the material are assumed to vary continuously along the thickness direction. The principal directions of orthotropy are parallel and perpendicular to the crack orientation. The loading consists of a uniform compressive strain applied away from the crack region. The graded coating is modeled as a nonhomogeneous medium with an orthotropic stress–strain law. Using a nonlinear continuum theory and a suitable perturbation technique, the plane strain problem is reduced to an eigenvalue problem describing the onset of buckling. Using integral transforms, the resulting plane elasticity equations are converted analytically into singular integral equations which are solved numerically to yield the critical buckling strain. The Finite Element Method was additionally used to model the crack problem. The main objective of the paper is to study the influence of material nonhomogeneity on the buckling resistance of the graded layer for various crack positions, coating thicknesses and different orthotropic FGMs.  相似文献   

18.
A multi-layered model for frictionless contact analysis of functionally graded materials (FGMs) with arbitrarily varying elastic modulus under plane strain-state deformation has been developed. Based on the fact that an arbitrary curve can be approached by a series of continuous but piecewise linear curves, the FGM is divided into several sub-layers and in each sub-layers the shear modulus is assumed to be linear function while the Poisson’s ratio is assumed to be a constant. With the model, the frictionless contact problem of a functionally graded coated half-space is investigated. By using the transfer matrix method and Fourier integral transform technique, the problem is reduced to a Cauchy singular integral equation. The contact pressure, contact region and indentation are calculated for various indenters by solving the equations numerically.  相似文献   

19.
This paper investigates the two-dimensional frictionless contact problem of a functionally graded magneto-electro-elastic materials (FGMEEMs) layered half-plane under a rigid flat or a cylindrical punch. It is assumed that the punch is a perfect electro-magnetic conductor with a constant electric potential and a constant magnetic potential. The magneto-electro-elastic (MEE) properties of the FGMEEM layer vary exponentially along the thickness direction. Using the Fourier transform technique, the contact problem can be reduced to Cauchy singular integral equations, which are then solved numerically to determine the normal contact stress, electric displacement and magnetic induction on the contact surface. Numerical results show that the gradient index, punch geometry and magneto-electro-mechanical loads have a significant effect on the contact behavior of FGMEEMs.  相似文献   

20.
本文基于所有接触面间光滑的假设,研究同时受压的两弹性层间的单退让平面接触问题. 利用Fourier变换把平面弹性方程转化为奇异积分方程. 然后利用Gauss-Chebyshev求积公式和迭代法求其数值解.最后给出了数值算例,分析了剪切模量与上层接触半径对退让半径和接触应力的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号