首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of the equilibrium shape and departure size of two-dimensional dropwise condensation drops on a vertical surface, presented in an earlier work, is extended to include advancing contact angles to 180°. The equation of the surface of the drop is obtained by minimizing (for a given volume) the total energy of the drop, consisting of surface and gravitational energy, using the techniques of variational calculus. The solution is tractable once the advancing contact angle is known, and is taken as an approximation to the axial meridian profile of a threedimensional drop. The receding contact angle is obtained as part of the solution. The drop size is specified by imposing its vertical length in contact with the wall. A maximum value of this length exists which provides a real solution, and this is taken as the departure size of the drop. It is shown that the general departure shape for an advancing contact angle of 180° includes the cases for all advancing contact angles.  相似文献   

2.
The problem of the equilibrium shape and departure size of two-dimensional dropwise condensation drops on a vertical surface is considered. The equation of the surface of the drop is obtained by minimizing (for a given volume) the total energy of the drop, consisting of surface and gravitational energy, using the techniques of variational calculus. The solution is tractable once the advancing contact angle is known, and is taken as an approximation to the axial meridian profile of a three-dimensional drop. The receding contact angle is obtained as part of the solution. The drop size is specified by imposing its vertical length. Upon increasing this vertical length, a point is reached at which no real solution exists, and this is taken as the departure size of the drop. Comparison with measured departure sizes under various body forces from standard to 100 times earth gravity are good.  相似文献   

3.
A three-dimensional unsteady theoretical model of droplet spreading process on an inclined surface is developed and numerically analyzed to investigate the droplet spreading dynamics via the lattice Boltzmann simulation. The contact line motion and morphology evolution for the droplet spreading on an inclined surface, which are, respectively, represented by the advancing/receding spreading factor and droplet wetted length, are evaluated and analyzed. The effects of surface wettability and inclination on the droplet spreading behaviors are examined. The results indicate that, dominated by gravity and capillarity, the droplet experiences a complex asymmetric deformation and sliding motion after the droplet comes into contact with the inclined surfaces. The droplet firstly deforms near the solid surface and mainly exhibits a radial expansion flow in the start-up stage. An evident sliding-down motion along the inclination is observed in the middle stage. And the surface-tension-driven retraction occurs during the retract stage. Increases in inclination angle and equilibrium contact angle lead to a faster droplet motion and a smaller wetted area. In addition, increases in equilibrium contact angle lead to a shorter duration time of the middle stage and an earlier entry into the retract stage.  相似文献   

4.
The formation of bubbles on an orifice plate involves a moving contact line, especially in case of poor wetting conditions. The dynamics of the moving contact line and contact angle have a significant impact on the bubble departure size. Therefore, for the numerical simulation, an appropriate contact line boundary condition is essential for a correct prediction of the bubble formation. Numerical tests have been performed on two kinds of contact line models, one is a contact line velocity dependent model (Model-A, a commonly used model) and the other is a stick-slip model (Model-B). The calculation results using Model-A depend greatly on the prescribed maximum contact line velocity. With Model-B a parameter-independent prediction can be obtained provided that the mesh is sufficiently fine. The dynamic advancing and receding contact angles, which are two required inputs to both models, have a significant influence on the predicted bubble departure diameter, if the contact line moves beyond the inner rim of the orifice. The effect of wettability on the bubble departure size is realized via the variation of the maximum contact diameter. When the contact line sticks to a small region near the inner rim of the orifice, such as the bubble formation on a thin-walled nozzle, the effects of the contact angle and contact line models are negligible.  相似文献   

5.
We describe a modeling technique for dynamic contact angle between a phase interface and a solid wall using a generalized Navier boundary condition in the context of a front-tracking-based multiphase method. The contact line motion is determined by the generalized Navier slip boundary condition in order to eliminate the infinite shear stress at the contact line. Applying this slip boundary condition only to the interface movement with various slip ratios shows good agreement with experimental results compared to allowing full fluid slip along the solid surface. The interface slip model performs well on grid convergence tests using both the slip ratio and slip length models. A detailed energy analysis was performed to identify changes in kinetic, surface, and potential energies as well as viscous and contact line dissipation with time. A friction coefficient for contact line dissipation was obtained based on the other computed energy terms. Each energy term and the friction coefficient were compared for different grid resolutions. The effect of varying the slip ratio as well as the contact angle distribution versus contact line speed was analyzed. The behavior of drop impact on a solid wall with different advancing and receding angles was investigated. Finally, the proposed dynamic contact model was extended to three dimensions for large-scale parallel calculations. The impact of a droplet on a solid cylinder was simulated to demonstrate the capabilities of the proposing formulation on general solid structures. Widely different contact angles were tested and showed distinctive characteristic behavior clearly.  相似文献   

6.
The hydrodynamic free-boundary problem of the axisymmetric spreading of a viscous-fluid drop over the smooth surface of a solid under the action of capillary forces and under the conditions of weak gravitation is considered. For finite inclination angles of the free surface and small capillary numbers, the problem is reduced to the simpler hydrodynamic problem in a region with known boundary by the asymptotic method. An expression for the dynamic edge angle of the drop is obtained. It is shown that in addition to the local inclination angle of the boundary near the contact line of three phases, one drop has several dynamic edge angles. These angles are calculated for small Reynolds and Bond numbers. Institute of Mechanics of Multiphase Systems, Siberian Division, Russian Academy of Sciences, Tyumen' 625000. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 101–107, January–February, 1999.  相似文献   

7.
In this study, we studied the contact line motion of second-order fluids theoretically and experimentally. The theoretical study showed that the positive first normal stress difference (N 1) increases the contact line velocity while the second normal stress difference (N 2) does not affect the contact line motion. The increased contact line velocity is caused by the hoop stress acting on the curved stream lines near the contact line. The hoop stress increases the liquid pressure near the contact line, and the increased pressure changes the surface profile to have the smaller curvature and smaller dynamic contact angle. The contribution of N 1is 1 order of magnitude smaller than the contribution from the viscous component when the Deborah number remains O(1). For experiments, silicone oils of different kinematic viscosities (1,000–200,000 mm 2/s) were used while eliminating the drying problem and shear-thinning effect near the contact line. The silicone oils were well fitted to the second-order fluid model with the positive first normal stress difference. The spreading rate of a silicone oil drop on a solid surface was faster than the spreading rate predicted by the theory for Newtonian fluids. As the theory predicts that N 1increases the contact line velocity and the experimental result confirms the theoretical prediction, the effect of N 1is established.  相似文献   

8.
We describe a tomographic PIV system for the measurement of the internal flow in a droplet over a stagnant and a moving surface. The flow condition is representative of the flow in an immersion droplet applied in a liquid immersion lithography machine. We quantify the accuracy and reliability of the measurements and compare the shape of the reconstructed measurement volume to shape measurements by means of shadowgraphy. First results indicate the internal flow pattern near the receding contact line, showing a small recirculation region.  相似文献   

9.
A two‐dimensional multi‐phase model for immiscible binary fluid flow including moving immersed objects is presented. The fluid motion is described by the incompressible Navier–Stokes equation coupled with a phase‐field model based on van der Waals' free energy density and the Cahn–Hilliard equation. A new phase‐field boundary condition was implemented with minimization of the free energy in a direct way, to specifically improve the physical behavior of the contact line dynamics for moving immersed objects. Numerical stability and execution time were significantly improved by the use of the new boundary condition. Convergence toward the analytical solution was demonstrated for equilibrium contact angle, the Lucas–Washburn theory and Stefan's problem. The proposed model may be used for multi‐phase flow problems with moving boundaries of complex geometry, such as the penetration of fluid into a deformable, porous medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The Characterization of the effects of surface wettability and geometry on pressure drop of slug flow in isothermal horizontal microchannels is investigated for circular and square channels with hydraulic diameter (D h ) of 700 μm. Flow visualization is employed to characterize the bubble in slug flow established in microchannels of various surface wettabilities. Pressure drop increases with decrease in surface wettability, while the channel geometry influences slug frequency. It is observed that the gas–liquid contact line in advancing and receding interfaces of bubble change with surface wettability in slug flows. Flow resistance, where capillary force is important, is estimated using Laplace–Young equation considering the change of dynamic contact angles of bubble. The experimental study also demonstrates that the liquid film presence elucidates the pressure drop variation of slug flows at various surface wettabilities due to diminishing capillary effect.  相似文献   

11.
The paper studies contact problem of a rigid stamp moving at a constant speed over the surface of anisotropic materials. The solution method is based on Galilean transformation, Fourier transform and singular integral equation. The stated mixed boundary value problem is reduced to a Cauchy type singular integral equation based on real fundamental solutions, which is solved exactly in the case of a rigid flat or cylindrical stamp. Explicit expressions for various stresses are obtained in terms of elementary functions. In particular, explicit formula is derived to determine the unknown contact region for the cylindrical stamp. For a flat stamp, detailed calculations are provided to show the influences of dimensionless moving speed on the normal and in-plane stress. For a cylindrical stamp, the effects of dimensionless moving speed, the mechanical loading and the radius on the contact region, the normal and in-plane stress are analyzed in detail.  相似文献   

12.
The problem of steady axisymmetric deformations of a liquid sessile drop on a flat solid surface under an impinging gas jet is of interest for understanding the fundamental behavior of free surface flows as well as for establishing the theoretical basis in process design for the Aerosol \({{\rm Jet}^{\circledR}}\) direct-write technology. It is studied here numerically using a Galerkin finite-element method, by computing solutions of Navier–Stokes equations. For effective material deposition in Aerosol \({{\rm Jet}^{\circledR}}\) printing, the desired value of Reynolds number for the laminar gas jet is found to be greater than ~500. The sessile drop can be severely deformed by an impinging gas jet when the capillary number is approaching a critical value beyond which no steady axisymmetric free surface deformation can exist. Solution branches in a parameter space show turning points at the critical values of capillary number, which typically indicate the onset of free surface shape instability. By tracking solution branches around turning points with an arc-length continuation algorithm, critical values of capillary number can be accurately determined. Near turning points, all the free surface profiles in various parameter settings take a common shape with a dimple at the center and bulge near the contact line. An empirical formula for the critical capillary number for sessile drops with \({45^{\circ}}\) contact angle is derived for typical ranges of jet Reynolds number and relative drop sizes especially pertinent to Aerosol \({{\rm Jet}^{\circledR}}\) printing.  相似文献   

13.
In static wetting on an elastic substrate, force exerted by the liquid–vapour surface tension on a solid surface deforms the substrate, producing a capillary ridge along the contact line. This paper presents a finite element formulation for predicting elastic deformation, close to the static wetting line (with angle of contact=90o and σSV=σSL).The substrate deformation is modelled with the Mooney–Rivlin constitutive law for incompressible rubber‐like solids. At the contact line, a stress singularity is known to arise, due to the surface tension acting on a line of infinitesimal thickness. To relive the stress singularity, either (i) the surface tension is applied over a finite contact region (of macroscopic thickness), or (ii) the solid crease angle is fixed. These two options suggest that normal component of Neumann's triangle law of forces, for the three surface tensions, is not applicable for elastic substrates (as for rigid ones). The vertical displacement of the contact line is a strong function of liquid/vapour surface tension and shear modulus of the solid. Copyright 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrodynamic problems of fluid flow with three-phase contact lines (for example, solid body-liquid-gas or solid body and two nonmixing liquids) are of special interest. Much attention has been paid lately to steady and quasisteady flows. Significantly unsteady problems of this kind have almost escaped consideration. In the present paper, we study a model problem of a significantly unsteady motion of a finite volume of an incompressible fluid with a three-phase contact line. The static contact angle is assumed to be right and the initial free surface of the liquid is assumed to be cylindrical. One of the planes instantaneously begins to move toward the other with a constant finite velocity. Flows with high Reynolds numbers and small capillary numbers are considered. Mass forces are ignored in the problem. The basic result is the construction of a formal asymptotic of the solution at small times. Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 4, pp. 51–61, July–August, 1999.  相似文献   

15.
Experimental data on velocity fields and flow patterns near a moving contact line is shown to be at variance with existing hydrodynamic theories. The discrepancy points to a new hydrodynamic paradox and suggests that the hydrodynamic approach may be incomplete and further parameters or forces affecting the surfaces may have to be included. A contact line is the line of intersection of three phases: (1) a solid, (2) a liquid, and (3) a fluid (liquid or gas) phase. A moving contact line develops when the contact line moves along the solid surface. A flat plate moved up and down, inside and out of a liquid pool defines a simple, reliable experimental model to characterize dynamic contact lines. Highlighted are three important conclusions from the experimental results that should be prominent in the development of new theoretical models for this flow. First, the velocity along the streamline configuring the liquid–fluid interface is remarkably constant within a distance of a couple of millimeters from the contact line. Second, the relative velocity of the liquid–fluid interface, defined as the ratio of the velocity along the interface to the velocity of the solid surface, is independent of the solid surface velocity. Third, the relative interface velocity is a function of the dynamic contact angle.  相似文献   

16.
We consider the creeping motion of a thin layer of a nonvolatile viscous fluid spreading due to capillary forces over a rigid surface covered by a thin homogeneous film (microfilm). The influence of van der Waals forces on the asymptotic slope of the free boundary of the layer is studied in the region of large thickness, where capillary forces dominate. A solution of the problem of the slope angle is obtained for the entire possible range of the microfilm thickness. In the limit of small thickness of the microfilm, this solution is in agreement with the well-known solution of the problem of the dynamics of wetting of a dry surface in the presence of a precursory film and van der Waals forces. The role of the condition at the end of the precursory film is studied. Institute of Mechanics of Multiphase Systems, Siberian Division, Russian Academy of Sciences. Tyumen' 625000. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika. Vol. 41, No. 4, pp. 101–105, July–August. 2000.  相似文献   

17.
The problem of the elastic interaction between a screw dislocation and a three-phase circular inclusion with interracial rigid lines (anti-cracks) is investigated. An efficient and concise method for the complex multiply connected region is developed, with which explicit series form solutions of the complex potentials in the matrix, and the interphase layer and inclusion regions are derived. Based on the complex potentials, the image force on the screw dislocation is then calculated by using the Peach-Koehler formula. The equilibrium position of the dislocation is discussed in detail for various rigid line geometries, interphase layer thicknesses and material property combinations. The main results show that the interracial rigid lines exert a significant perturbation effect on the motion of the screw dislocation near the circular inclusion surrounded by an interphase layer.  相似文献   

18.
A weakly nonlocal phase-field model is used to define the surface tension in liquid binary mixtures in terms of the composition gradient in the interfacial region so that, at equilibrium, it depends linearly on the characteristic length that defines the interfacial width. Contrary to previous works suggesting that the surface tension in a phase-field model is fixed, we define the surface tension for a curved interface and far-from-equilibrium conditions as the integral of the free energy excess (i.e., above the thermodynamic component of the free energy) across the interface profile in a direction parallel to the composition gradient. Consequently, the nonequilibrium surface tension can be widely different from its equilibrium value under dynamic conditions, while it reduces to its thermodynamic value for a flat interface at local equilibrium. In nonequilibrium conditions, the surface tension changes with time: during mixing, it decreases as the inverse square root of time, while in the linear regime of spinodal decomposition, it increases exponentially to its equilibrium value, as nonlinear effects saturate the exponential growth. In addition, since temperature gradients modify the steepness of the concentration profile in the interfacial region, they induce gradients in the nonequilibrium surface tension, leading to the Marangoni thermocapillary migration of an isolated drop. Similarly, Marangoni stresses are induced in a composition gradient, leading to diffusiophoresis. We also review results on the nonequilibrium surface tension for a wall-bound pendant drop near detachment, which help to explain a discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart from a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we present new results from phase-field simulations of the motion of an isolated droplet down an incline in gravity, showing that dynamic contact angle hysteresis can be explained in terms of the nonequilibrium surface tension.  相似文献   

19.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In part 1 (Gouin, [13]), we proposed a model of dynamics of wetting for slow movements near a contact line formed at the interface of two immiscible fluids and a solid when viscous dissipation remains bounded. The contact line is not a material line and a Young-Dupré equation for the apparent dynamic contact angle taking into account the line celerity was proposed. In this paper we consider a form of the interfacial energy of a solid surface in which many small oscillations are superposed on a slowly varying function. For a capillary tube, a scaling analysis of the microscopic law associated with the Young-Dupré dynamic equation yields a macroscopic equation for the motion of the contact line. The value of the deduced apparent dynamic contact angle yields for the average response of the line motion a phenomenon akin to the stick-slip motion of the contact line on the solid wall. The contact angle hysteresis phenomenon and the modelling of experimentally well-known results expressing the dependence of the apparent dynamic contact angle on the celerity of the line are obtained. Furthermore, a qualitative explanation of the maximum speed of wetting (and dewetting) can be given.Received: 5 June 2001, Accepted: 24 May 2003, Published online: 29 July 2003PACS: 02.90, 47.50, 66.20, 68.03, 68.08  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号