首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
力学   17篇
数学   1篇
物理学   5篇
  2022年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2014年   2篇
  2012年   3篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
排序方式: 共有23条查询结果,搜索用时 265 毫秒
1.
The nonlinear free vibration of carbon nanotubes/fiber/polymer composite (CNTFPC) multi-scale plates with surface-bonded piezoelectric actuators is studied in this paper. The governing equations of the piezoelectric nanotubes/fiber/polymer multiscale laminated composite plates are derived based on first-order shear deformation plate theory (FSDT) and von Kármán geometrical nonlinearity. Halpin–Tsai equations and fiber micromechanics are used in hierarchy to predict the bulk material properties of the multiscale composite. The carbon nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. A perturbation scheme of multiple time scales is employed to determine the nonlinear vibration response and the nonlinear natural frequencies of the plates with immovable simply supported boundary conditions. The effects of the applied constant voltage, plate geometry, volume fraction of fibers and weight percentage of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) on the linear and nonlinear natural frequencies of the piezoelectric nanotubes/fiber/polymer multiscale composite plate are investigated through a detailed parametric study.  相似文献   
2.
This paper presents a mesh-free Galerkin method for the free vibration and stability analyses of stiffened plates via the first-order shear deformable theory (FSDT). The model of a stiffened plate is formed by (1) regarding the plate and the stiffener separately, (2) imposing displacement compatible conditions between the plate and the stiffener so that displacement fields of the stiffener can be expressed in terms of the mid-surface displacement of the plate, and (3) superimposing the strain energy of plate and stiffener. Because there are no meshes used in this method, the stiffeners can be placed anywhere on the plate and need not be placed along the mesh lines. Several numerical examples are computed by this method to show its accuracy and convergence. The present results demonstrate good agreement with the existing solutions given by other researchers and the ANSYS. Influences of support size and order of the complete basis functions on the numerical accuracy are also investigated.  相似文献   
3.
B. Yang  J. Yang  S. Kitipornchai 《Meccanica》2017,52(10):2275-2292
Thermoelastic bending behaviour of novel functionally graded polymer nanocomposite rectangular plate reinforced with graphene nanoplatelets (GPLs) whose weight fraction varies continuously and smoothly along the thickness direction is investigated. The generalized Mian and Spencer method is utilized to obtain the analytical solutions of nanocomposite rectangular plate with two opposite edges simply supported and under a uniformly distributed transverse load and a temperature change. Three GPL distribution patterns are considered. Comparison between the present analytical solutions and those available in literature is carried out to verify the accuracy of our analytical solutions. A parametric study is conducted to examine the effects of GPL’s weight fraction, distribution pattern, geometry and size as well as the temperature change and plate boundary conditions on the stress and deformation fields of the nanocomposite plates. Numerical results show that the addition of GPLs at a very low content can have a significant reinforcing effect on the thermo-mechanical response of the plate.  相似文献   
4.
This paper investigates the nonlinear flexural dynamic behavior of a clamped Timoshenko beam made of functionally graded materials (FGMs) with an open edge crack under an axial parametric excitation which is a combination of a static compressive force and a harmonic excitation force. Theoretical formulations are based on Timoshenko shear deformable beam theory, von Karman type geometric nonlinearity, and rotational spring model. Hamilton’s principle is used to derive the nonlinear partial differential equations which are transformed into nonlinear ordinary differential equation by using the Least Squares method and Galerkin technique. The nonlinear natural frequencies, steady state response, and excitation frequency-amplitude response curves are obtained by employing the Runge–Kutta method and multiple scale method, respectively. A parametric study is conducted to study the effects of material property distribution, crack depth, crack location, excitation frequency, and slenderness ratio on the nonlinear dynamic characteristics of parametrically excited, cracked FGM Timoshenko beams.  相似文献   
5.
A nonlinear vibration analysis of a simply supported functionally graded rectangular plate with a through-width surface crack is presented in this paper. The plate is subjected to a transverse excitation force. Material properties are graded in the thickness direction according to exponential distributions. The cracked plate is treated as an assembly of two sub-plates connected by a rotational spring at the cracked section whose stiffness is calculated through stress intensity factor. Based on Reddy’s third-order shear deformation plate theory, the nonlinear governing equations of motion for the FGM plate are derived by using the Hamilton’s principle. The deflection of each sub-plate is assumed to be a combination of the first two mode shape functions with unknown constants to be determined from boundary and compatibility conditions. The Galerkin’s method is then utilized to convert the governing equations to a two-degree-of-freedom nonlinear system including quadratic and cubic nonlinear terms under the external excitation, which is numerically solved to obtain the nonlinear responses of cracked FGM rectangular plates. The influences of material property gradient, crack depth, crack location and plate thickness ratio on the vibration frequencies and transient response of the surface-racked FGM plate are discussed in detail through a parametric study.  相似文献   
6.
Song  Mitao  Zhou  Lei  Karunasena  Warna  Yang  Jie  Kitipornchai  Sritawat 《Nonlinear dynamics》2022,109(4):2423-2441
Nonlinear Dynamics - This work investigates nonlinear dynamic instability of edge-cracked functionally graded (FG) graphene nanoplatelet (GNP)-reinforced composite (GNPRC) beams consist of...  相似文献   
7.
Soft materials and structures have recently attracted lots of research interests as they provide paramount potential applications in diverse fields including soft robotics, wearable devices, stretchable electronics and biomedical engineering. In a previous work, an Euler–Bernoulli finite strain beam model with thickness stretching effect was proposed for soft thin structures subject to stiff constraint in the width direction. By extending that model to account for the transverse shear effect, a Timoshenko-type finite strain beam model within the plane-strain context is developed in the present work. With some kinematic hypotheses, the finite deformation of the beam is analyzed, constitutive equations are deduced from the theory of finite elasticity, and by employing the standard variational method, the equilibrium equations and associated boundary conditions are derived. In the limit of infinitesimal strain, the new model degenerates to the classical extensible and shearable elastica model. The corresponding incremental equilibrium equations and associated boundary conditions are also obtained. Based on the new beam model, analytical solutions are given for simple deformation modes, including uniaxial tension, simple shear, pure bending, and buckling under an axial load. Furthermore, numerical solution procedures and results are presented for cantilevered beams and simply supported beams with immovable ends. The results are also compared with the previously developed finite strain Euler–Bernoulli beam model to demonstrate the significance of transverse shear effect for soft beams with a small length-to-thickness ratio. The developed beam model will contribute to the design and analysis of soft robots and soft devices.  相似文献   
8.
Summary The paper investigates the elastic buckling behaviour of columns under a combined trapezoidal distributed axial load and an end concentrated load. The buckling analysis takes into account the effects of pre-buckling shortening and shear deformation. For shear deformation, Engesser's assumption of the shear force acting perpendicularly to the centreline of the deflected column is adopted. Based on the derived incremental total potential energy functional, the finite element method is employed for solution. The effects of pre-buckling shortening and shear deformation are investigated and approximate formulas are proposed to incorporate them into the assessment of buckling loads for columns.
Knickung von Stäben mit Vorstauchung und Schubverformung bei allgemeiner Belastung
Übersicht In diesem Beitrag wird die elastische Stabknickung unter axialer, trapezförmiger Streckenlast und Einzellast am Ende untersucht. Der Einfluß einer Stabverkürzung vor dem Knicken und von Schubverformung wird berücksichtigt. Hinsichtlich der Schubverformung wird Engessers Annahme verwendet, d. h., die Querkraft wirkt senkrecht zur Achse des verformten Balkens. Ausgehend vom Funktional der inkrementellen, totalen potentiellen Energie wird zur Lösung die Finite-Element-Methode benutzt. Die Effekte von Vorstauchung und Schubverformung werden untersucht. Es werden Näherungsformeln für die Abschätzung der Knicklasten vorgeschlagen.
  相似文献   
9.
Summary  This paper presents the exact relationships between the deflections and stress resultants of Timoshenko curved beams and that of the corresponding Euler-Bernoulli curved beams. The curved beams considered are of rectangular cross sections and constant radius of curvature. They may have any combinations of classical boundary conditions, and are subjected to any loading distribution that acts normal to the curved beam centreline. These relationships allow engineering designers to directly obtain the bending solutions of Timoshenko curved beams from the familiar Euler-Bernoulli solutions without having to perform the more complicated shear deformation analysis. Accepted for publication 26 July 1996  相似文献   
10.
The frictionless contact problem of a functionally graded piezoelectric layered half-plane in-plane strain state under the action of a rigid flat or cylindrical punch is investigated in this paper. It is assumed that the punch is a perfect electrical conductor with a constant potential. The electro-elastic properties of the functionally graded piezoelectric materials (FGPMs) vary exponentially along the thickness direction. The problem is reduced to a pair of coupled Cauchy singular integral equations by using the Fourier integral transform technique and then is numerically solved to determine the contact pressure, surface electric charge distribution, normal stress and electric displacement fields. For a flat punch, the normal stress intensity factor and electric displacement intensity factor are also given to quantitatively characterize the singularity behavior at the punch ends. Numerical results show that both material property gradient of the FGPM layer and punch geometry have a significant influence on the contact performance of the FGPM layered half-plane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号