首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three‐dimensional baroclinic numerical model has been developed to compute water levels and water particle velocity distributions in coastal waters. The numerical model consists of hydrodynamic, transport and turbulence model components. In the hydrodynamic model component, the Navier–Stokes equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. The transport model component consists of the pollutant transport model and the water temperature and salinity transport models. In this component, the three‐dimensional convective diffusion equations are solved for each of the three quantities. In the turbulence model, a two‐equation k–ϵ formulation is solved to calculate the kinetic energy of the turbulence and its rate of dissipation, which provides the variable vertical turbulent eddy viscosity. Horizontal eddy viscosities can be simulated by the Smagorinsky algebraic sub grid scale turbulence model. The solution method is a composite finite difference–finite element method. In the horizontal plane, finite difference approximations, and in the vertical plane, finite element shape functions are used. The governing equations are solved implicitly in the Cartesian co‐ordinate system. The horizontal mesh sizes can be variable. To increase the vertical resolution, grid clustering can be applied. In the treatment of coastal land boundaries, the flooding and drying processes can be considered. The developed numerical model predictions are compared with the analytical solutions of the steady wind driven circulatory flow in a closed basin and of the uni‐nodal standing oscillation. Furthermore, model predictions are verified by the experiments performed on the wind driven turbulent flow of an homogeneous fluid and by the hydraulic model studies conducted on the forced flushing of marinas in enclosed seas. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A single-point model eddy viscosity model of rotation effects on the turbulent flow in an axially rotating pipe is developed based on two-point closure theories. Rotation is known to impede energy transfer in turbulence; this fact is reflected in the present model through a reduced eddy viscosity, leading to laminarization of the mean velocity profile and return to a laminar friction law in the rapid rotation limit. This model is compared with other proposals including linear redistribution effects through the rapid pressure-strain correlation, Richardson number modification of the eddy viscosity in a model of non-rotating turbulence, and the reduction of turbulence through the suppression of near-wall production mechanisms. PACS 47.27.Eq, 47.32.-y  相似文献   

3.
Two-equation models that treat the transport equations for two variables are typical models for the Reynolds-averaged Navier–Stokes equation. Compared to the equation for the turbulent kinetic energy, the equation for the second variable such as the dissipation rate does not have a theoretical analogue. In this work, the exact transport equation for the eddy diffusivity was derived and examined for better understanding turbulence and improving two-equation models. A new length scale was first introduced, which involves the response function for the scalar fluctuation. It was shown that the eddy diffusivity can be expressed as the correlation between the velocity fluctuation and the new length scale. The transport equations for the eddy diffusivity and the length-scale variance were derived theoretically. Statistics such as terms in the transport equations were evaluated using the direct numerical simulation of turbulent channel flow. It was shown that the streamwise component of the eddy diffusivity is greater than the other two components in the whole region. In the transport equation for the eddy diffusivity, the production term due to the Reynolds stress is a main positive term, whereas the pressure–length-gradient correlation term plays a role of destruction. It is expected that the analysis of the transport equations is helpful in developing better turbulence models.  相似文献   

4.
The closure problem of turbulence is still a challenging issue in turbulence modeling. In this work, a stability condition is used to close turbulence. Specifically, we regard single-phase flow as a mixture of turbulent and non-turbulent fluids, separating the structure of turbulence. Subsequently, according to the picture of the turbulent eddy cascade, the energy contained in turbulent flow is decomposed into different parts and then quantified. A turbulence stability condition, similar to the principle of the energy-minimization multi-scale (EMMS) model for gas–solid systems, is formulated to close the dynamic constraint equations of turbulence, allowing the inhomogeneous structural parameters of turbulence to be optimized. We name this model as the “EMMS-based turbulence model”, and use it to construct the corresponding turbulent viscosity coefficient. To validate the EMMS-based turbulence model, it is used to simulate two classical benchmark problems, lid-driven cavity flow and turbulent flow with forced convection in an empty room. The numerical results show that the EMMS-based turbulence model improves the accuracy of turbulence modeling due to it considers the principle of compromise in competition between viscosity and inertia.  相似文献   

5.
The closure problem of turbulence is still a challenging issue in turbulence modeling. In this work, a stability condition is used to close turbulence. Specifically, we regard single-phase flow as a mixture of turbulent and non-turbulent fluids, separating the structure of turbulence. Subsequently, according to the picture of the turbulent eddy cascade, the energy contained in turbulent flow is decomposed into different parts and then quantified. A turbulence stability condition, similar to the principle of the energy-minimization multi-scale (EMMS) model for gas-solid systems, is formulated to close the dynamic constraint equa- tions of turbulence, allowing the inhomogeneous structural parameters of turbulence to be optimized. We name this model as the "EMMS-based turbulence model", and use it to construct the corresponding turbulent viscosity coefficient. To validate the EMMS-based turbulence model, it is used to simulate two classical benchmark problems, lid-driven cavity flow and turbulent flow with forced convection in an empty room, The numerical results show that the EMMS-hased turbulence model improves the accuracy of turbulence modeling due to it considers the principle of compromise in competition between viscosity and inertia.  相似文献   

6.
A theoretical method based on mathematical physics formalism that allows transposition of turbulence modeling methods from URANS (unsteady Reynolds averaged Navier–Stokes) models, to multiple-scale models and large eddy simulations (LES) is presented. The method is based on the spectral Fourier transform of the dynamic equation of the two-point fluctuating velocity correlations with an extension to the case of non-homogenous turbulence. The resulting equation describes the evolution of the spectral velocity correlation tensor in wave vector space. Then, we show that the full wave number integration of the spectral equation allows one to recover usual one-point statistical closure whereas the partial integration based on spectrum splitting gives rise to partial integrated transport models (PITM). This latter approach, depending on the type of spectral partitioning used, can yield either a statistical multiple-scale model or subfilter transport models used in LES or hybrid methods, providing some appropriate approximations are made. Closure hypotheses underlying these models are then discussed by reference to physical considerations with emphasis on identification of tensorial fluxes that represent turbulent energy transfer or dissipation. Some experiments such as the homogeneous axisymmetric contraction, the decay of isotropic turbulence, the pulsed turbulent channel flow and a wall injection induced flow are then considered as typical possible applications for illustrating the potentials of these models.   相似文献   

7.
在可压缩多介质粘性流体动力学高精度计算方法MVPPM(multi-viscous-fluid piecewise parabolicmethod)基础上,引入Smagorinsky和Vreman亚格子湍流模型,采用大涡数值模拟方法求解可压缩粘性流体NS(Navier-Stokes)方程,给出适用于可压缩多介质流体界面不稳定性发展演化至湍流阶段的计算方法和二维计算程序MVFT(multi-viscosity-fluid and turbulence)。在2种亚格子湍流模型下计算了LANL(Los Ala-mos National Laboratory)激波管单气柱RM不稳定性实验,分析了气柱的形状、流场速度以及涡的特征,通过与LANL实验和计算结果的比较可知,Vreman模型略优于Smagorinsky模型,MVFT方法和计算程序可用于对界面不稳定性发展演化至湍流阶段的数值模拟。  相似文献   

8.
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in straight ducts using the RNG (Re-Normalized Group) turbulence method.

A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts with different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with the RNG κ?ε model and the RNG non-linear κ-ε model of Speziale. The turbulent heat fluxes are modeled by the simple eddy diffusivity (SED) concept, GGDH and WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models arc implemented for an arbitrary three dimensional duct.

Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non-staggered grid arrangement. The pressure-velocity coupling is handled by using the SIMPLEC-algorithm. The convective terms are treated by the QUICK, scheme while the diffusive terms are handled by the central-difference scheme. The hybrid scheme is used for solving the κ and ε equations.

The overall comparison between the models is presented in terms of friction factor and Nusselt number. The secondary flow generation is also of major concern.  相似文献   

9.
Large eddy simulation (LES) models for flamelet combustion are analyzed by simulating premixed flames in turbulent stagnation zones. ALES approach based on subgrid implementation of the linear eddy model(LEM) is compared with a more conventional approach based on the estimation of the turbulent burning rate. The effects of subgrid turbulence are modeled within the subgrid domain in the LEM-LES approach and the advection (transport between LES cells) of scalars is modeled using a volume-of-fluid (VOF) Lagrangian front tracking scheme. The ability of the VOF scheme to track the flame as a thin front on the LES grid is demonstrated. The combined LEM-LES methodology is shown to be well suited for modeling premixed flamelet combustion. The geometric characteristics of the flame surfaces, their effects on resolved fluid motion and flame-turbulence interactions are well predicted by the LEM-LES approach. It is established here that local laminar propagation of the flamelets needs to be resolved in addition to the accurate estimation of the turbulent reaction rate. Some key differences between LEM-LES and the conventional approach(es) are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Handler, Hendricks and Leighton have recently reported results for the direct numerical simulation (DNS) of a turbulent channel flow at moderate Reynolds number. These data are used to evaluate the terms in the exact and modelled transport equations for the turbulence kinetic energy k and the isotropic dissipation function ε. Both modelled transport equations show significant imbalances in the high-shear region near the channel walls. The model for the eddy viscosity is found to yield distributions for the production terms which do not agree well with the distributions calculated from the DNS data. The source of the imbalance is attributed to the wall-damping function required in eddy viscosity models for turbulent flows near walls. Several models for the damping function are examined, and it is found that the models do not vary across the channel as does the damping when evaluated from the DNS data. The Lam-Bremhorst model and the standard van Driest model are found to give reasonable agreement with the DNS data. Modification of the van Driest model to include an effective origin yields very good agreement between the modelled production and the production calculated from the DNS data, and the imbalance in the modelled transport equations is significantly reduced.  相似文献   

11.
A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carrier fluid in a two-phase flow The continuity, the momentum, K and ε equations are modeled. In this model,the solid-liquid slip veloeites, the particle-particte interactions and the interactions between two phases are considered,The sandy water pipe turbulent flows are sueeessfuly predicted by this turbulince model.  相似文献   

12.
Unsteady three-dimensional (3D) computational fluid dynamics (CFD) simulations are conducted with the open-source software OpenFOAM to assess the scale-adaptive k-ω-SST-SAS turbulence model (SAS) on a radial, volute-type centrifugal pump at part load operation which is characterized by high unsteadiness and flow separation. SAS results are compared to spatially high resolved and ensemble-averaged flow measurement data in terms of flow angle and turbulence intensity (TI) in the rotor–stator interaction region. Differences to simulation results obtained with the statistical state-of-the-art k-ω-SST turbulence model (SST) are highlighted. The flow angle is predicted with a reasonable agreement to measurement data by both, SST and SAS models. In the highly transient flow of strong rotor–stator interaction near the volute tongue, SST results show a significant overprediction of measured TI while the SAS model yields a considerably better agreement to measurement data even with a typical URANS grid resolution. A grid refinement does not further improve the agreement to measurement data. An in-depth analysis of the SAS model on separated flow, i.e., periodic hill test case, together with a large eddy simulation (LES) reference solution is performed and reveals that with successive grid refinement, in contrast to LES, the SAS model in its present form of Egorov and Menter (2008) does not resolve a successively larger portion of the turbulence spectrum, and the modeled part is not successively reduced. For that purpose, a re-calibration or even a re-formulation of the scale-adaption source term in the transport equation of the turbulent dissipation rate may be indispensable, which will be the subject of future studies.  相似文献   

13.
The gradient transport model for k is extended to classes of turbulent flows for which the gradient transport hypothesis is relevant but the anisotropy of the Reynolds stress, to which the eddy diffusivity is proportional, is large and variable. In highly anisotropic turbulence the standard isotropic model used in engineering practice is fundamentally wrong and the conventional anisotropic approximation inadequate. The work is motivated by the important observations that the eddy diffusivity coefficient for a standard gradient transport model for various transported quantities is a factor of 3–10 times larger in highly anisotropic turbulence than that used in standard engineering models. While the conventional anisotropic eddy diffusivity approximation appears adequate for material conserved scalars it is inadequate for k. The problem is solved by addressing the anisotropy of the turbulent transport of k at the level of the underlying third order tensor. It is shown that, unlike the traditional transport models for k, the orientation of the anisotropy with respect to the direction of the gradient plays a crucial role not accounted for in conventional models used in engineering calculations. The new anisotropic eddy diffusivity tensor is quadratic in the anisotropy (the traditional model is linear in the anisotropy). It is shown that the new more rigorous anisotropic eddy diffusivity varies 300% more than the standard model comparing the isotropic limit to the value for the two-dimensional limit. The two-dimensional limit is important in strongly stably stratified flows, in pressure gradient or shock driven flows and in rotating flows. Using the simple shear and the homogeneous non-equilibrium Rayleigh Taylor turbulence the new anisotropic diffusivity tensor is validated in inhomogeneous Rayleigh Taylor turbulence at early and late times.  相似文献   

14.
A new turbulence model for the flow of a two phase (liquid-liquid) flow in an inclined pipe is presented. An eddy viscosity is used to model the effects of shear induced turbulence and bubble induced turbulence. The cross-pipe momentum transport arising from the buoyant rise of bubbles across the axial flow is also modelled. Numerical simulations have been carried out in both one and two dimensions. One and two dimensional numerical simulations are presented.On leave from the University of Leeds, Leeds LS2 9JT, U.K.  相似文献   

15.
In this study, large eddy simulation (LES) has been used to examine supersonic flow, mixing, self-ignition and combustion in a model scramjet combustor and has been compared against the experimental data. The LES model is based on an unstructured finite-volume discretization, using monotonicity-preserving flux reconstruction of the filtered mass, momentum, species and energy equations. Both a two-step and a seven-step hydrogen–air mechanism are used to describe the chemical reactions. Additional comparisons are made with results from a previously presented flamelet model. The subgrid flow terms are modeled using a mixed model, whereas the subgrid turbulence–chemistry interaction terms are modeled using the partially stirred reactor model. Simulations are carried out on a scramjet model experimentally studied at Deutsches Zentrum für Luft- und Raumfahrt consisting of a one-sided divergent channel with a wedge-shaped flame holder at the base of which hydrogen is injected. The LES predictions are compared with experimental data for velocity, temperature, wall pressure at different cross sections as well as schlieren images, showing good agreement for both first- and second-order statistics. In addition, the LES results are used to illustrate and explain the intrinsic flow, and mixing and combustion features of this combustor.  相似文献   

16.
A new two-equation model is proposed for large eddy simulations (LESs) using coarse grids. The modeled transport equations are obtained from a direct transposition of well-known statistical models by using multiscale spectrum splitting given by the filtering operation applied to the Navier–Stokes equations. The model formulation is compatible with the two extreme limits that are on one hand a direct numerical simulation and on the other hand a full statistical modeling. The characteristic length scale of subgrid turbulence is no longer given by the spatial discretization step size, but by the use of a dissipation equation. The proposed method is applied to a transposition of the well-known k- statistical model, but the same method can be developed for more advanced closures. This approach is intended to contribute to non-zonal hybrid models that bridge Reynolds-averaged Navier–Stokes (RANS) and LES, by using a continuous change rather than matching zones. The main novelty in the model is the derivation of a new equation for LES that is formally consistent with RANS when the filter width is very large. This approach is dedicated to applications to non-equilibrium turbulence and coarse grid simulations. An illustration is made of large eddy simulations of turbulence submitted to periodic forcing. The model is also an alternative approach to hybrid models. PACS 47.27.Eq  相似文献   

17.
Dynamic equations have been obtained for the two-point double correlations of the fluctuation velocities of a fluid and the particles suspended in it at low volume concentrations of the solid phase. In the case of uniform isotropic turbulence these equations can be considerably simplified. The final period of decay of isotropic turbulence has been studied in detail. At this stage in the case of high-inertia particles the inhomogeneous-fluid turbulence is similar to the turbulence of a homogeneous fluid (without particles) in the sense that the presence of the particles affects only the fluctuation energy but leaves unchanged the spatial scales of turbulence and the spatial energy spectrum function. The suspended particles lead to exponential damping of the turbulent pulsations.Little theoretical information is available on the hydrodynamics of a suspension of fine particles in a turbulent liquid or gas. Research has been mainly confined to the behavior of the individual particles in a given turbulence field [1]. The problem of the turbulent motion of the mixture as a whole has been examined by Barenblatt [2], who derived the equations of motion of the mixture, using Kolmogorov's hypothesis to close them. Hinze [3] has also attempted to derive equations for turbulent pulsations of the mixture. However, as Murray showed [4], Hinze' s equations contradict Newton' s third law.The effect of suspended particles on the turbulence of a two-phase flow is governed by the noncorrespondence of the local velocities of the particles and the medium. The forces of resistance to the motion of the particles relative to the fluid lead to additional dissipation of fluctuation energy and decay of turbulence [2]. On the other hand, if the averaged velocities of particles and medium do not correspond, the suspended particles may also have a destabilizing effect [5, 6], causing energy transfer from the averaged to the pulsating motion. Below we shall consider the case where the averaged velocities of the two phases coincide, i.e., we shall deal only with the first of the two above-mentioned effects.The authors thank G.I. Barenblatt for his useful advice.  相似文献   

18.
For the case of axial compression the two-point velocity correlation equations of axisymmetric homogeneous turbulence are derived. Appropriate integrations then lead to equations for the components of the Reynolds stress tensor as well as to those for the two independent integral length-scales characterizing axisymmetric homogeneous turbulence. These equations contain a certain number of empirical constants. Values for these constants are taken from the literature, or were adjusted from the present data.The resulting model is validated using data from a motored piston engine. The flow field, which has negligible swirl and tumble, has been measured using particle image velocimetry (PIV). Since turbulence is axisymmetric and homogeneous in the counter region, two-dimensional PIV provides the time history of the axial and radial length-scales. The experimental data are compared with the mathematical model.  相似文献   

19.
The flow of water in a straight compound channel with prismatic cross section is investigated with a relatively new tool, the lattice Boltzmann method. The large eddy simulation model is added in the lattice Boltzmann model for nonlinear shallow water equations (LABSWETM) so that the turbulence, caused by lateral exchange of momentum in the shear layer between the main channel and floodplain, can be taken into account and modeled efficiently. To validate the numerical model, a symmetrical compound channel with trapezoidal main channel and flat floodplain is tested. Similar to most natural watercourses, the floodplain has higher roughness values than the main channel. Different relative depths, Dr (the ratio of the depth of flow on the floodplain to that in the main channel), are considered. The Reynolds number is set at 30 000 in the main channel. The lateral distributions of the longitudinal velocity, the boundary shear stress, the Reynolds stress and the apparent shear stress across the channel are obtained after the large eddy simulation is performed. The results of numerical simulations are compared with the available experiment data, which show that the LABSWETM is capable of modeling the features of flow turbulence in compound channels and is sufficiently accurate for practical applications in engineering. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
本文采用关联分析方法研究了稳定温度分层湍流中的结构特性、输运特性,以及热量、动量逆梯度输运现象的尺度效应及其参数演化.首先采用大涡模拟方法对稳定分层湍流中的结构特性和输运特性进行了分析,将逆梯度输运发生的时间尺度作为已知条件,结合关联量分析方法在波数空间中的解析解,对逆梯度输运现象的尺度效应进行了分析研究.结果发现,稳定分层强度较大的流动中发生垂向热量及动量逆梯度输运现象,发生的结构尺度与关联分析所发现垂向热量、动量逆梯度输运的波数形成了呼应.随着分层强度增加,热量、动量的输运强度均受抑制,与逆梯度输运关联的流场结构尺度减小,同样的效应也发生在流场结构向下游演化的过程中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号