首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A computational study of supersonic combustion behind a wedge-shaped flameholder
Authors:C Fureby  E Fedina  J Tegnér
Institution:1. Defence Security Systems and Technology, Swedish Defence Research Agency-FOI, Tumba, 147 25, Stockholm, Sweden
Abstract:In this study, large eddy simulation (LES) has been used to examine supersonic flow, mixing, self-ignition and combustion in a model scramjet combustor and has been compared against the experimental data. The LES model is based on an unstructured finite-volume discretization, using monotonicity-preserving flux reconstruction of the filtered mass, momentum, species and energy equations. Both a two-step and a seven-step hydrogen–air mechanism are used to describe the chemical reactions. Additional comparisons are made with results from a previously presented flamelet model. The subgrid flow terms are modeled using a mixed model, whereas the subgrid turbulence–chemistry interaction terms are modeled using the partially stirred reactor model. Simulations are carried out on a scramjet model experimentally studied at Deutsches Zentrum für Luft- und Raumfahrt consisting of a one-sided divergent channel with a wedge-shaped flame holder at the base of which hydrogen is injected. The LES predictions are compared with experimental data for velocity, temperature, wall pressure at different cross sections as well as schlieren images, showing good agreement for both first- and second-order statistics. In addition, the LES results are used to illustrate and explain the intrinsic flow, and mixing and combustion features of this combustor.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号