首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
GPS接收机码环跟踪回路的误差模型一般可用一阶马尔可夫过程来近似,且当接收机载波环路失锁时,码环的速率辅助信息来自惯性导航系统的惯性速度。鉴于此,本文对GPS/SINS组合系统误差状态方程中考虑或忽视码环跟踪误差的两种情况,用卡尔曼滤波器对系统性能进行研究,并探讨了飞机机动飞行时伪距测量误差与惯性速度误差之间的相关性对接收机码环跟踪性能的影响。结果表明,飞机机动及GPS最佳导航星在飞机运动过程中的变化对GPS接收机码环的工作稳定性都有一定的影响。  相似文献   

2.
针对接收机在强干扰高动态环境难以定位导航的问题,提出基于惯导速度辅助卫星跟踪环路算法,通过惯导速度估算环路多普勒频移,压缩了环路需承载的动态范围,从而减少了环路等效噪声带宽,进而降低了跟踪环路带内干扰,提高了卫星接收机抗干扰能力。对提出算法的普适性、动态性、抗干扰性以及惯导估算误差影响等方面进行了仿真评估,仿真结果验证了算法的正确性,同时证明提出算法相比传统算法,载体运动加速度由91g提升至193g,同时抗干扰能力提升5~8 d B,可以容忍较大惯导辅助信息误差,为算法工程化奠定了基础。  相似文献   

3.
随着北斗导航系统的组网,北斗/INS深耦合接收机的研制具有重要价值。传统的接收机基带滤波环路通常为相互独立的载波环路滤波器与码环路滤波器,码环路无法充分利用载波环路的信息,因此码环的动态性能受到限制。设计了载波/码组合滤波器,将载波环与码环的测量信息在一个滤波器内进行耦合,实时估计码相位、载波相位、多普勒频移与其变化率。通过北斗B3频点实际静态数据和GNSS模拟器采集的卫星-用户视线方向40g高动态数据进行离线跟踪测试,载波/码组合滤波环路可跟踪40g高动态信号,且静态数据的跟踪精度相比传统滤波环路提高27%。上述算法成功应用于基于Xilinx平台的卫星信号处理设备在线跟踪。提出的组合滤波器结构简单,测试有效,为北斗/INS深耦合接收机的工程实现提供参考。  相似文献   

4.
由于传统卫星导航矢量跟踪环路使用矢量频率跟踪环路,无法实现对载波相位的跟踪,难以实现载波平滑码伪距,其定位和测速精度较低。针对上述问题,提出了一种新型面向高精度的矢量跟踪算法,采用矢量频率锁定环辅助锁相环代替传统的频率锁定环路辅助锁相环,通过矢量频率跟踪环路实现更精确的频率跟踪,再进行载波相位跟踪和码相位平滑,从而提高接收机的载波相位跟踪和定位性能。给出了上述结构的理论性能分析结果,并通过模拟信号和软件接收机进行了静态和动态两种场景的实验验证。结果证明,矢量频率跟踪辅助锁相环能够充分利用多个信号跟踪通道的矢量关系,在10个卫星同时跟踪的条件下,将载波相位原始观测量精度提高16%,速度精度提高40%左右。  相似文献   

5.
针对标量跟踪中接收机各跟踪通道相互独立,通道之间没有信息交互和相关辅助的现象,提出了一种惯性/GNSS矢量深组合方法。该方法将接收机标量跟踪独立的跟踪通道合并为一个大通道,通过所有通道信息联合对各通道控制信息进行估计,一方面降低了通道噪声,另一方面能够实现强信号通道对弱信号通道的辅助,进一步提升接收机的跟踪灵敏度。此外,它将惯导滤波与接收机滤波融合为一个滤波器,降低了计算复杂度,易于工程实现。仿真结果表明,所提出算法相比标量深组合算法,能够有效改善多普勒频率误差、灵敏度以及速度、高度误差,将多普勒频率误差从原来的9.21 Hz降低到0.94 Hz,速度误差改善约33.3%,高度误差减少1.5~2 m。  相似文献   

6.
在INS/GPS紧耦合系统中,通过把惯导系统的位置、速度等估计值反馈到GPS的跟踪环,使环路带宽可以变窄,以明显改善GPS的抗干扰能力.在这种组合系统中,跟踪误差是由环路带宽内中的干扰噪声、振荡器相位噪声引起,此外还有惯性传感器的误差引起的跟踪误差.文中提出了按照GPS信号的载噪比自适应地调节GPS的环路带宽的方案,这将使GPS接收机在任何条件下包括存在干扰时保持最佳状态.分析和仿真计算说明,与采用固定带宽时相比,自适应带宽的紧耦合系统具有更高的抗干扰能力和对卫星信号的跟踪精度.  相似文献   

7.
对于大多数高动态接收机,通常采用2阶FLL辅助的3阶PLL环路结构,由于存在FLL环路,导致跟踪精度的下降。针对卫星接收机的动态性能和信号载波功率噪声密度比,在综合考虑接收机跟踪环路中的各种误差源(热噪声、晶振误差、动态牵引误差等)的基础上,采用自适应最优带宽技术,设计一种适用于高动态的3阶PLL载波跟踪环。采用基于GPS数字中频信号的数字仿真和GNSS信号源对所设计的自适应最优带宽进行了验证,验证结果表明:在加速度为30g、过程中存在加加速度为30g/s的高动态情况下,采用18 Hz 3阶PLL不能对信号进行跟踪,而采用所设计的自适应最优带宽的3阶PLL环可以对信号进行可靠的跟踪;同时,和固定带宽接收机比较,所设计载波跟踪环环路能够跟踪50g的高动态Compass卫星信号,而采用固定带宽接收机失锁,并且定位精度优于1 m(2σ),测速精度优于0.2 m/s(2σ)。  相似文献   

8.
传统的卫星导航接收机无法同时适应高动态和高精度要求。对于10g以上的加速度,高精度接收机很难达到高精度的指标,甚至基带环路失锁无法正常导航定位。针对GNSS动态条件下高精度定位需求,引入惯性/卫星深组合导航技术,在应用惯性信息辅助接收机减小基带跟踪环路带宽基础上,采用码片窄相关方法降低伪距抖动误差,提高动态条件下GNSS伪距定位精度。仿真结果表明:通过惯性信息辅助跟踪环路可实现较小跟踪环路带宽下的稳定跟踪;在此基础上,通过码片窄相关方法并提高射频前端带宽可实现定位精度的提高。对比传统的伪距定位方法,定位精度(1?)从6 m提高到3 m左右。  相似文献   

9.
在INS/GPS紧耦合系统中,通过把惯导系统的位置、速度等估计值反馈到GPS的跟踪环,使环路带宽可以变窄,以明显改善GPS的抗干扰能力。在这种组合系统中,跟踪误差是由环路带宽内中的干扰噪声、振荡器相位噪声引起,此外还有惯性传感器的误差引起的跟踪误差。文中提出了按照GPS信号的载噪比自适应地调节GPS的环路带宽的方案,这将使GPS接收机在任何条件下包括存在干扰时保持最佳状态。分析和仿真计算说明,与采用固定带宽时相比,自适应带宽的紧耦合系统具有更高的抗干扰能力和对卫星信号的跟踪精度。  相似文献   

10.
为了降低GNSS/INS组合系统平台下的GNSS接收机功耗,提出了一种基于INS辅助的"间歇式"低功耗接收机方案,其中低功耗跟踪环路包括工作、休眠二个模式周期。在启动进入工作周期时,接收机根据惯性系统提供的初始状态估测直接进入跟踪环节,对参数进行校正估测并完成位置、速度解算。最后将更新后的位置、速度结果送入惯性系统中,通过组合滤波方式完成惯性系统的误差校正。实际静态、动态实验结果表明,在惯性系统辅助下,相比于传统接收机,间歇式工作模式接收机能在消耗20%左右功耗情况下,完成了与传统GNSS接收机等同的位置、速度计算服务。  相似文献   

11.
基于MATLAB的GPS软件接收机捕获与跟踪算法实现   总被引:1,自引:1,他引:1  
研究了GPS软件接收机的捕获和跟踪算法,并基于Matlab软件平台和射频前端在PC上实现了GPS软件接收机样机。介绍了GPS软件接收机的结构和数据采集硬件,讨论了GPSC/A码的特性、产生原理以及捕获过程。针对传统的串行搜索算法慢的缺点以及高动态GPS软件接收机的特点,在该样机中实现了快速的基于循环卷积的并行捕获算法,并联合使用超前滞后环和对相位反转不敏感的科斯塔斯锁相环分别对码相位和多普勒频偏进行跟踪,解调得到导航电文。仿真和测试结果表明,使用GPS软件接收机进行信号处理的思想使用户在算法处理和软件升级等方面具有更大的灵活性,可应用于下一代任何全球导航卫星定位系统(GNSS)和空基增强系统(SBAS)接收机的设计。  相似文献   

12.
为提高车辆导航系统的精确度和可靠性,提出一种车辆动力学模型辅助惯性导航系统的方法。建立车辆非线性动力学模型,利用四阶龙格库塔法实时解算速度信息。以惯导误差方程为状态方程,动力学模型与惯性导航解算的速度差为观测量,设计了容积卡尔曼滤波器,并用估计的状态误差对惯导进行校正。仿真结果表明,所提出的利用车辆动力学模型辅助惯导的方法能有效抑制惯导误差的发散,位置精度和速度精度比纯惯导系统提高了一个数量级,航向角精度提高了73%。  相似文献   

13.
基于射频前端的GPS软件接收机设计与验证   总被引:5,自引:8,他引:5  
介绍了基于硬件射频前端的GPS软件接收机设计与验证。针对GPS串行的搜索算法速度慢的缺点,采用了高速的并行码相位搜索算法;设计和实现了码跟踪环和载波跟踪环,并用载波环路来辅助码跟踪环路;综合考虑接收机的动态性和噪声影响,采用最优化设计思想,设计了GPS软件接收机最优环路带宽。采用GPS中频信号采样器采集实际GPS数据,对搜索和跟踪算法进行了验证。测试结果证明所设计的搜索和跟踪方法是有效的,使得用户在微弱信号处理、多路径处理和发展新的算法等方面具有更大的灵活性,为实际的高性能硬件GPS接收机设计提供的重要的基础。  相似文献   

14.
一种新型深组合GPS/INS系统的设计与性能仿真研究   总被引:3,自引:0,他引:3  
本文提出和研究了一种新的深组合GPS/INS系统设计方法,它适用于干扰环境中的各类高动态载体。其特点是利用自适应码跟踪误差估计器,使组合卡尔曼滤波器获得白化的伪距量测残差,将组合卡尔曼滤波器纳入码跟踪环路,用以代替传统的速率辅助的延迟锁定环。组合卡尔曼滤波器根据信号的噪声、动态、以及INS的误差,自适应地改变码环的跟踪特性,同时也完成惯性导航系统误差的估计。它能克服常规组合系统不稳定性问题,仿真结果表明,在机动飞行和强干扰状态下,这种组合导航系统具有较高的导航精度和良好的信号跟踪及抗干扰性能。  相似文献   

15.
为实现惯导系统长时间高精度导航,以性能优良的电子海图显示信息系统为开发背景,对地磁匹配辅助惯性导航系统进行了设计和仿真实验。在原有电子海图显示信息系统的基础上开发了数据采集模块、地磁数据库模块、惯导/地磁匹配模块、惯导误差估计模块等功能软件,并对各功能模块进行了深入分析。仿真试验结果证明,基于电子海图显示信息系统的惯性/地磁组合导航达到了校正惯性导航系统,实现高精度导航的目的。  相似文献   

16.
基于矢量跟踪的SINS/GPS深组合导航方法   总被引:1,自引:1,他引:0  
为了满足高动态用户及强噪声干扰条件下的应用需求,提出了一种基于矢量跟踪的SINS/GPS深组合导航方案。深组合方案利用组合卡尔曼滤波器反馈回路取代了传统接收机中独立、并行的跟踪环路,能够同时完成所有可视卫星信号跟踪和组合导航信息处理的任务;利用相关器残差来更新导航参数状态,同时根据已有的导航参数和星历信息推测GPS伪码相位和多普勒频移等信号跟踪参数,用以控制接收机的本地伪码、载波数控振荡器(NCO),使本地伪码相位和载波频率与输入信号保持一致。最后,通过仿真验证表明,基于矢量跟踪的深组合方法不仅在GPS信号发生短暂中断期间,能够保证组合系统的导航精度和可靠性,而且在载噪比较低的环境中能够维持较好的伪码相位和载波频率跟踪性能。  相似文献   

17.
INS/GPS深组合导航系统的本地码和载波数控振荡器(NCO)控制量的计算需要利用滤波修正后的惯导位置信息或速度信息,其中的多普勒频移计算需要同时利用位置和速度信息。基带I、Q信息的更新率通常为1 kHz,利用惯导信息解算出的多普勒频移为100 Hz,利用级联积分梳状(CIC)滤波器进行插值有效解决了二者更新率的匹配问题。此外,导航滤波器的更新频率通常为1 Hz,惯导解算频率为100 Hz,对于低精度惯导系统,在滤波修正周期之间误差累积较快,利用外推方法有效控制了惯导解算误差。通过半实物仿真分析,基于外推和CIC滤波器的在线插值结果与基于B-样条插值结果对比,误差标准差约为1 Hz,误差的频谱被限定在0.02 Hz以内,结果表明了该方法的有效性。  相似文献   

18.
即时定位与制图可以在线构建环境特征地图同时利用所建地图辅助定位,可以建立基于特征地图的的地形辅助全自主式导航系统。当GPS信号有效时,导航系统利用INS/GPS组合方式进行精确导航,同时在线建立特征地图,并不断更新修正地图。当GPS信号无效的时候,之前建立的地图用来修正惯导误差,约束惯导误差在一定的范围内,达到精确导航的目的。将及时定位与制图在线制图的功能引入组合导航系统使得该系统具有在线跟踪路标制图和限制系统误差扩延的能力,此性能通过计算机仿真得到验证。  相似文献   

19.
针对舰载传递对准中主/子惯导之间挠曲变形及其产生的动态杆臂问题,首先分析了主/子惯导的IMU输出关系;然后建立了子惯导的系统误差模型;最后将挠曲变形和动态杆臂视作一种能量有限的未知量测噪声,设计了H∞滤波算法。仿真实验对比了已知挠曲变形和动态杆臂时的Kalman滤波方案1和未知挠曲变形和动态杆臂时的Kalman滤波方案2、H∞滤波方案3的对准效果,结果表明:使用H∞滤波方案3的航向对准速度较慢,但最终对准精度优于使用Kalman滤波方案2,与使用Kalman滤波方案1的对准精度相当,水平精度达到0.15'以内,航向精度达到0.5'以内,运算时间减少约20%。因此所设计的H∞滤波算法对挠曲变形和动态杆臂有良好的抑制能力,满足实际舰载传递对准的要求。  相似文献   

20.
针对可用卫星数目不足、多星座GNSS接收机不能定位条件下,传统GNSS/INS松耦合方式退化为"纯惯性"模式,无法抑制惯导误差发散的问题,提出了一种基于多星座GNSS接收机原始伪距观测量的GNSS/INS紧耦合方法。利用惯导与多星座GNSS接收机搭建硬件平台,开展了车载试验。试验结果表明,当可用卫星数目满足定位条件时,多星座GNSS/INS紧耦合方法与松耦合方法的导航精度相当;当可用卫星数目不足、多星座GNSS接收机不能定位时,多星座GNSS/INS紧耦合方法仍可利用剩余卫星提供的观测信息继续运行,当卫星数减少为5颗时,纬度和经度精度均优于30 m;当卫星数进一步减少为4颗时,纬度精度优于90 m,经度精度优于50 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号