首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
In modeling highly flexible beams undergoing arbitrary rigid–elastic deformations, difficulties exist in describing large rotations using rotational variables, including three Euler angles, two Euler angles, one principal rotation angle plus three direction cosines of the principal rotation axis, four Euler parameters, three Rodrigues parameters, and three modified Rodrigues parameters. The main problem is that such rotational variables are either sequence-dependent and/or spatially discontinuous because they are not mechanics-based variables. Hence, they are not appropriate for use as nodal degrees of freedom in total-Lagrangian finite-element modeling. Moreover, it is difficult to apply boundary conditions on such discontinuous and/or sequence-dependent rotational variables. This paper presents a new geometrically exact beam theory that uses no rotation variables and has no singular points in the spatial domain. The theory fully accounts for geometric nonlinearities and initial curvatures by using Jaumann strains, exact coordinate transformations, and orthogonal virtual rotations. The derivations are presented in detail, fully nonlinear governing equations and boundary conditions are presented, a finite element formulation is included, and the corresponding governing equations for numerically exact analysis using a multiple shooting method is also derived. Numerical examples are used to illustrate the problems of using rotational variables and to demonstrate the accuracy of the proposed geometrically exact displacement-based beam theory.  相似文献   

2.
In this paper a beam element that accounts for inelastic axial-flexure–shear coupling is presented. The mathematical model is derived from a three-field variational form. The finite element approximation for the beam uses shape functions for section forces that satisfy equilibrium and discontinuous section deformations along the beam. No approximation for the beam displacement field is necessary in the formulation. The coupling of the section forces is achieved through the numerical integration of an inelastic multi-axial material model over the cross-section. The proposed element is free from shear-locking. Examples confirm the accuracy and numerical robustness of the proposed element and showcase the interaction between axial force, shear, and bending moment.  相似文献   

3.
S. Rajasekaran 《Meccanica》2014,49(4):863-886
Differential transformation method is used to obtain the shape functions for nodal variables of an arbitrarily non-uniform curved beam element including the effects of shear deformation considering axially functionally graded material. The proposed shape functions depend on the variations in cross-sectional area, moment of inertia, curvature and material properties along the axis of the curved beam element. The static and free vibration of axially functionally graded tapered curved beams including shear deformation and rotary inertia are studied through solving several examples. Numerical results are presented for circular, parabolic, catenary, elliptic and sinusoidal beams (both forms—prime and quadratic) with hinged-hinged, hinged-clamped and clamped-clamped and clamped-free end restraints. Three general taper types (depth taper, breadth taper and square taper) for rectangular cross section are studied. Out of plane vibration is studied and the lowest natural frequencies are calculated and compared with the published results. Out of plane buckling is investigated for circular beams due to radial load.  相似文献   

4.
5.
研究高次杆单元和梁单元的节点位移精度问题.首先求出一端固支均匀杆和悬臂梁在任意次多项式形式分布载荷作用下的位移精确解,然后用二次杆单元、五次欧拉梁单元和三次铁木辛柯梁单元求得了节点位移.通过比较有限元解与精确解以及利用静力凝聚方法,发现一次以上杆单元、三次以上欧拉梁单元以及三次以上铁木辛柯梁单元都可以给出精确的端点位移.  相似文献   

6.
计及热应变的空间曲梁的刚-柔耦合动力学   总被引:1,自引:1,他引:1  
研究带中心刚体的作大范围运动的空间曲梁的刚-柔耦合动力学.结合混合坐标法和绝对坐标法的特点,取与中心刚体大范围运动有关的变量和柔性梁各单元节点相对中心刚体连体基的位移和斜率作为广义坐标,建立了一种新的柔性梁的刚柔耦合模型.基于精确的应变和位移的关系式,根据Jourdian速度变分原理,建立了带中心刚体柔性曲梁的有限元离散的动力学方程.数值对比了空间曲梁系统和空间直梁系统的刚柔耦合动力学性质,用能量守恒规律验证了文中曲梁模型的合理性.在此基础上,在应变能中计及热应变,研究温度增高引起的曲梁的热膨胀对系统的动力学性态的影响.  相似文献   

7.
为了计算任意复杂非圆截面梁横截面扭转中心的位置,用节线法将其约束受扭后所有横截面面外变形的形状用一族包含节线未知函数的曲面表示,建立梁约束受扭时的控制方程后,再用常微分方程求解器分别求出单纯扭矩与横向载荷单独作用时节线未知函数的数值解,最后用刚度等效原理导出复杂截面梁横截面扭转中心的位置。算例计算结果表明:该方法是合理的、有效的,是计算任意复杂非圆截面梁横截面扭转中心位置的可靠方法。  相似文献   

8.
Non-linear constitutive models of the elastic forces for a hyperelastic material are presented. Three elastic force models including Neo-Hookean, Mooney-Riblin 2nd, and Yeoh models are derived based on non-linear continuum mechanics. Elastic forces are applied to the three-dimensional absolute nodal coordinate beam element, and the transient response of the cantilever beam is analyzed. Simulation results are compared to experiment data, and the dynamic characteristics of elastic force models presented in this paper are discussed.  相似文献   

9.
This paper proposes a singularity-free beam element with Euler–Bernoulli assumption, i.e., the cross section remains rigid and perpendicular to the tangent of the centerline during deformation. Each node of this two-nodal beam element has eight nodal coordinates, including three global positions and one normal strain to describe the rigid translation and flexible deformation of the centerline, respectively, four Euler parameters or quaternion to represent the attitude of cross section. Adopting quaternion instead of Eulerian angles as nodal variables avoids the traditionally encountered singularity problem. The rigid cross section assumption is automatically satisfied. To guarantee the perpendicularity of cross section to the deformed neutral axes, the position and orientation coordinates are coupled interpolated by a special method developed here. The proposed beam element allows arbitrary spatial rigid motion, and large bending, extension, and torsion deformation. The resulting governing equations include normalization constraint equations for each quaternion of the beam nodes, and can be directly solved by the available differential algebraic equation (DAE) solvers. Finally, several numerical examples are presented to verify the large deformation, natural frequencies and dynamic behavior of the proposed beam element.  相似文献   

10.
固定形状的单元位移插值函数不能合理地近似变截面梁内部的位移变化,从而影响了传统梁单元用于计算变截面梁的精度.采用直接基于单元平衡的思想给出了计算变截面梁反应的有限元方法,解决了单元位移插值函数局限性所带来的问题.导出了变截面梁单元的单元刚度矩阵、单元等效节点荷载和单元一致质量矩阵.在此基础上,利用编制的程序进行了算例验证与分析.算例验证了本文理论的正确性,表明本文方法具有很高的计算精度.  相似文献   

11.
The element created in this investigation is based on the it absolute nodal coordinate formulation (ANCF) which has been successfully used in flexible multibody system dynamic and integration of computer aid design and analysis (ICADA). When modeling a B-spline curve with ANCF beam element, it is the common manner to convert this curve into a series of Bézier curves because the systematical conversion between ANCF beam element and a Bézier curve has already been built. In order to avoid the constrain equation produced in this method and to express a B-spline curve using only one element, an alternative approach is developed, leading to the piecewise ANCF (PANCF) beam element. It is demonstrated that when two ANCF beam elements are connected according to a particular continuity, they can constitute a PANCF element. Besides, a new PANCF element will be produced when an ANCF element is connected to an existing PANCF element. The continuity condition can be automatically ensured by the selection of nodal coordinates and the calculation of the piecewise continuous shape functions. The algorithm for converting a B-spline curve to a PANCF beam element is then given. There also are discussions on the features of PANCF element. When two neighboring segments of PANCF element have the same assumed length, the position vector at the interface cannot be expressed by the other coordinates so the position vector is preserved in the \(C^{2}\) continuous situation. Two examples are given to conclude the interpolation and continuity properties of the shape function and to demonstrate the feasibility of this PANCF in the ICADA.  相似文献   

12.
In this paper, general closest point projection algorithm is derived for the elastoplastic behavior of a cross-section of a beam finite element. For given section deformations, the section forces (stress resultants) and the section tangent stiffness matrix are obtained as the response for the cross-section. Backward Euler time integration rule is used for the solution of the nonlinear evolution equations. The solution yields the general closest projection algorithm for stress resultants plasticity model. Algorithmic consistent tangent stiffness matrix for the section is derived. Numerical verification of the algorithms in a mixed formulation beam finite element proves the accuracy and robustness of the approach in simulating nonlinear behavior.  相似文献   

13.
The purpose of this paper is to present formulations for beam elements based on the absolute nodal co-ordinate formulation that can be effectively and efficiently used in the case of thin structural applications. The numerically stiff behaviour resulting from shear terms in existing absolute nodal co-ordinate formulation beam elements that employ the continuum mechanics approach to formulate the elastic forces and the resulting locking phenomenon make these elements less attractive for slender stiff structures. In this investigation, additional shape functions are introduced for an existing spatial absolute nodal co-ordinate formulation beam element in order to obtain higher accuracy when the continuum mechanics approach is used to formulate the elastic forces. For thin structures where bending stiffness can be important in some applications, a lower order cable element is introduced and the performance of this cable element is evaluated by comparing it with existing formulations using several examples. Cables that experience low tension or catenary systems where bending stiffness has an effect on the wave propagation are examples in which the low order cable element can be used. The cable element, which does not have torsional stiffness, can be effectively used in many problems such as in the formulation of the sliding joints in applications such as the spatial pantograph/catenary systems. The numerical study presented in this paper shows that the use of existing implicit time integration methods enables the simulation of multibody systems with a moderate number of thin and stiff finite elements in reasonable CPU time.  相似文献   

14.
Euler–Bernoulli arbitrary discontinuous beams acted upon by static loads are addressed. Based on appropriate Green’s functions here derived in a closed form, the response variables are obtained: (a) for stepped beams with internal springs, as closed-form functions of the beam discontinuity parameters, without enforcing neither internal nor boundary conditions; (b) for stepped beams with internal springs and along-axis supports, as closed-form functions of the unknown reactions of the along-axis supports only, to be computed by enforcing pertinent conditions. A remarkable reduction in computational effort is achieved, in this manner, compared to competing methods in the literature.  相似文献   

15.
一个改进的平面梁单元   总被引:8,自引:0,他引:8  
根据有限单元法基本原理 ,提出了一个变截面平面梁单元 ,推导了其单元钢度矩阵。这一改进的梁单元用于分析梁高呈线性变化及二次抛物线变化的矩形截面梁 ,将得到准确解。文中给出了一个变截面悬臂梁算例 ,计算表明 ,这一改进的梁单元使变截面梁的分析大大简化  相似文献   

16.
17.
In the present paper the Differential Quadrature Method, DQM, and the domain decomposition are used to carry out the free transverse vibration analysis of non-uniform multi-span rotating Timoshenko beams with perfect and not perfect boundary conditions. The cross section could vary in a continuous or discontinuous fashion along the beam length. The material of the beam could be different in each beam span. The influence of elastically clamped boundary conditions at hub end are studied and discussed. The effect of an arbitrary hub radius is considered. The governing differential equations of motion for rotating Timoshenko beams come from the derivation of Hamilton’s principle. The first six natural frequencies of vibration are obtained for many particular situations and for some of them the mode shapes are also available. The examples of applications of the method indicated its effectiveness. The results for particular cases are in excellent agreement with published results and results obtained by means of the finite element method.  相似文献   

18.
19.
吴吉  章定国  黎亮  陈渊钊  钱震杰 《力学学报》2019,51(4):1134-1147
本文对带集中质量的平面内旋转柔性曲梁动力学特性进行了研究.基于绝对节点坐标法推导出曲梁单元,其中该曲梁单元采用Green-Lagrangian应变,并根据曲梁变形前后的曲率变化和曲率的精确表达式计算了曲梁单元弹性力所作的虚功.通过虚功原理,利用$\delta$函数和中心刚体与悬臂曲梁之间的固支边界条件,建立了带集中质量的旋转柔性曲梁非线性动力学模型.基于该模型,本文仿真计算了悬臂曲梁的纯弯曲问题和带有刚柔耦合效应的旋转柔性曲梁动力学响应问题,以此分别讨论了所提出曲梁单元的收敛性和动力学模型的正确性.进一步应用D'Alembert原理,将旋转曲梁等效为带离心力的无旋转曲梁,通过线性摄动处理得到系统的特征方程,以此分别研究了旋转角速度、初始曲率和集中质量对曲梁动力学特性的影响.最后重点分析了旋转曲梁的频率转向和振型切换问题,并阐述了两者之间的相互关系.研究结果表明:随着旋转角速度的增大,曲梁的频率特性与直梁的频率特性相近,以及曲梁拉伸变形占主导的模态振型会提前.   相似文献   

20.
In this paper, linear and quadratic finite element models are devised for the three- dimensional Helmholtz problem by using a hybrid variational functional. In each element, contin- uous and discontinuous Helmholtz fields are defined with their equality enforced over the element boundary in a weak sense. The continuous field is based on the C° nodal interpolation and the discontinuous field can be condensed before assemblage. Hence, the element can readily be in- corporated seamlessly into the standard finite element program framework. Discontinuous fields constructed by the plane-wave, Bessel and singular spherical-wave solutions are attempted. Nu- merical tests demonstrate that some of the element models are consistently and considerably more accurate than their conventional counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号