首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonlinear factors existing in engineering structures have drawn considerable attention, and nonlinear identification is a competent technique to understand the dynamic characteristics of nonlinear structures. Therefore, in this paper, a novel nonlinear separation subspace identification (NSSI) algorithm based on subspace algorithm and nonlinear separation strategy is proposed to conduct nonlinear parameter identification of nonlinear structures. For the proposed NSSI algorithm, the low-level excitation test is firstly conducted to obtain the transfer matrix in the linear response formula. Then, the obtained transfer matrix is used in the high-level excitation test to calculate the nonlinear response part by the proposed nonlinear separation strategy, and the subspace algorithm is utilized to identify the nonlinear parameter on the modified state-space model including only the nonlinear part. The proposed NSSI algorithm can reduce the coupling error caused by simultaneously processing both the large number part (corresponding to the linear part) and small number part (corresponding to the nonlinear part) in the traditional nonlinear subspace identification (NSI) algorithm. At last, two numerical experiments are given to validate the effectiveness of the developed novel nonlinear identification method. Furthermore, some influence factors are discussed to show the stability of the identification algorithm, and some comparisons between the proposed NSSI method and traditional NSI method are also conducted to demonstrate the advantages of the novel method.  相似文献   

2.
The DORT method is a selective detection and focusing technique originally developed to detect defects and damages which induce linear changes of the elastic moduli. It is based on the time reversal (TR) where a signal collected from an array of transducers is time reversed and then back-propagated into the medium to obtain focusing on selected targets. TR is based on the principle of spatial reciprocity. Attenuation, dispersion, multiple scattering, mode conversion, etc. do not break spatial reciprocity. The presence of defects or damage, may cause materials to show nonlinear elastic wave propagation behavior that will break spacial reciprocity. Therefore the DORT method will not allow focusing on nonlinear elastic scatterers. This paper presents a new method for the detection and identification of multiple linear and nonlinear scatterers by combining nonlinear elastic wave spectroscopy, time reversal and DORT method. In the presence of nonlinear hysteretic elastic scatterers, forcing the solid with a harmonic excitation, the time reversal operator can be obtained not only at the fundamental frequency of excitation, but also at the odd harmonics. At the fundamental harmonic, either inhomogeneities and linear damages can be individually selected but only at odd harmonics nonlinear hysteretic elastic damages exist. A procedure was developed where by decomposing the operator at the odd harmonics, it was possible to focus on nonlinear scatterers and to differentiate them from the linear inhomogeneities. A complete mathematical nonlinear DORT formulation for 1 and 2D structures is presented. To model the presence of nonlinear elastic hysteretic scatterers a Preisach–Mayergoyz (PM) material constitutive model was used. Results relative to 1 and 2 dimensional structures are reported showing the capability of the method to focus and discern selectively linear and nonlinear scatterers. Furthermore, an analysis was conducted to study the influence of the number of sources and their location on the imaging process showing that using a higher numbers of sensors does not automatically bring to a minor uncoupled behaviour between the nonlinear targets.  相似文献   

3.
The industrial structural systems always contain various kinds of nonlinear factors. Recently, a number of new approaches have been proposed to identify those nonlinear structures. One of the promising methods is the nonlinear subspace identification method (NSIM). The NSIM is derived from the principals of the stochastic subspace identification method (SSIM) and the internal feedback formulation. First, the nonlinearities in the system are regarded as internal feedback forces to its underlying linear dynamic system. The linear and nonlinear components of the identified system can be decoupled. Second, the SSIM is employed to identify the nonlinear coefficients and the frequency response functions of the underlying linear system. A typical SSIM always consists of two steps. The first step makes a projection of certain subspaces generated from the data to identify the extended observability matrix. The second one is to estimate the system matrices from the identified observability matrix. Since the calculated process of the NSIM is non-iterative and this method poses no additional problems on the part of parameterization, the NSIM becomes a promising approach to identify nonlinear structural systems. However, the result generated by the NSIM has its deficiency. One of the drawbacks is that the identified results calculated by the NSIM are not the optimal solutions which reduce the identified accuracy. In this study, a new time-domain subspace method, namely the nonlinear subspace-prediction error method (NSPEM), is proposed to improve the identified accuracy of nonlinear systems. In the improved version of the NSIM, the prediction error method (PEM) is used to reestimate those estimated coefficient matrices of the state-space model after the application of NSIM. With the help of the PEM, the identified results obtained by the NSPEM can truly become the optimal solution in the least square sense. Two numerical examples with local nonlinearities are provided to illustrate the effectiveness and accuracy of the proposed algorithm, showing advantages with respect to the NSIM in a noise environment.  相似文献   

4.
With the aim of eventually improving numerical solutions of small-scale phenomena, the Hunter-Keller theory of weakly nonlinear high-frequency waves is applied to the study of short wavelength instabilities in inviscid fluids driven by a heat or pressure source. A nonlinear damping effects is found which, for acoustic perturbations of a stationary, homogeneous state, reduces the growth rate to half the linear estimate. This is due primarily to the interactions of the expansion fan and the weak shock generated by the cumulative effect of the nonlinear convective term. For acoustic perturbations driven by an unbalanced heat source, the nonlinear damping actually stabilizes some modes which are unstable according to the linear theory. For the isentropic compression of a spherical shell of material obeying a γ-law equation of state, it is shown that the nonlinear damping again reduces the acoustic growth rate to the half the value predicted by conventional linear stability analyses.  相似文献   

5.
Bukhari  Mohammad  Barry  Oumar 《Nonlinear dynamics》2020,99(2):1539-1560
Nonlinear Dynamics - Recent focus has been given to spectro-spatial analysis of nonlinear metamaterials since they can predict interesting nonlinear phenomena not accessible by spectral analysis...  相似文献   

6.
The performance of the nonlinear energy sink (NES) that composed of a small mass and essentially nonlinear coupling stiffness with a linear structure is considerably enhanced here by including the negative linear and nonlinear coupling stiffness components. These negative linear and nonlinear stiffness components in the NES are realized here through the geometric nonlinearity of the transverse linear springs. By considering these components in the NES, very intersecting results for passive targeted energy transfer (TET) are obtained. The performance of this modified NES is found here to be much improved than that of all existing NESs studied up to date in the literature. Moreover, nearly 99 % of the input shock energy induced by impulse into the linear structures considered here has been found to be rapidly transferred and locally dissipated by the modified NES. In addition, this modified NES maintains its high performance of shock mitigation in a broadband fashion of the input initial energies where it keeps its high performance even for sever input energies. This is found to be achieved by an immediate cascade of several resonance captures at low- and high- nonlinear normal modes frequencies. The findings obtained here by including the negative linear and nonlinear stiffness components are expected to significantly enrich the application of these stiffness components in the TET field of such nonlinear oscillators.  相似文献   

7.
Presented here is a general theory for the three-dimensional nonlinear dynamics of elastic anisotropic initially straight beams undergoing moderate displacements and rotations. The theory fully accounts for geometric nonlinearities (large rotations and displacements) by using local stress and strain measures and an exact coordinate transformation, which result in nonlinear curvature and strain-displacement expressions that contain the von Karman strains as a special case. Extensionality is included in the formulation, and transverse shear deformations are accounted for by using a third-order theory. Six third-order nonlinear partial-differential equations are derived for describing one extension, two bending, one torsion, and two shearing vibrations of composite beams. They show that laminated beams display linear elastic and nonlinear geometric couplings among all motions. The theory contains, as special cases, the Euler-Bernoulli theory, Timoshenko's beam theory, the third-order shear theory, and the von Karman type nonlinear theory.  相似文献   

8.
Moving from a general plate theory, a modified general shear deformable laminated plate theory (MGFSDT) exhibiting nonlinear curvatures but still allowing for some worth features of linear curvature models (von Karman) is formulated. Starting from MGFSDT partial differential equations, a minimal discretized model (Duffing equation) for symmetric cross-ply laminates nonlinear vibrations, whose coefficients account for shear deformability and nonlinear curvatures, is obtained via the Galerkin procedure. The variable features of such a Duffing model as obtainable via alternative kinematic assumptions at the continuum level are highlighted. Through the comparison of a number of underlying models in different technical situations, information on the influence of shear deformability on system nonlinear response and on the influence of nonlinear curvatures are obtained. Frequency–response curves through a multiple scale analysis are presented for different continuous models, kinds of material, mode numbers and boundary conditions.  相似文献   

9.
A general nonlinear theory for the dynamics of elastic anisotropic plates undergoing moderate-rotation vibrations is presented. The theory fully accounts for geometric nonlinearities (moderate rotations and displacements) by using local stress and strain measures and an exact coordinate transformation, which result in nonlinear curvatures and strain-displacement expressions that contain the von Karman strains as a special case. The theory accounts for transverse shear deformations by using a third-order theory and for extensionality and changes in the configuration due to in-plane and transverse deformations. Five third-order nonlinear partial-differential equations of motion describing the extension-extension-bending-shear-shear vibrations of plates are obtained by an asymptotic analysis, which reveals that laminated plates display linear elastic and nonlinear geometric couplings among all motions.  相似文献   

10.
We introduce a class of stochastic volatility models whose parameters are modulated by a hidden nonlinear dynamical system. Our aim is to incorporate the impact of economic cycles, or business cycles, into the long-term behavior of volatility dynamics. We develop a discrete-time nonlinear filter for the estimation of the hidden volatility and the nonlinear dynamical system based on return observations. By exploiting the technique of a reference probability measure we derive filters for the hidden volatility and the nonlinear dynamical system.  相似文献   

11.
A nonlinear vibration isolation system is promising to provide a high-efficient broadband isolation performance. In this paper, a generalized vibration isolation system is established with nonlinear stiffness, nonlinear viscous damping, and Bouc-Wen(BW)hysteretic damping. An approximate analytical analysis is performed based on a harmonic balance method(HBM) and an alternating frequency/time(AFT) domain technique.To evaluate the damping effect, a generalized equivalent damping ratio is defined with the stiffness-varying characteristics. A comprehensive comparison of different kinds of damping is made through numerical simulations. It is found that the damping ratio of the linear damping is related to the stiffness-varying characteristics while the damping ratios of two kinds of nonlinear damping are related to the responding amplitudes. The linear damping, hysteretic damping, and nonlinear viscous damping are suitable for the small-amplitude, medium-amplitude, and large-amplitude conditions, respectively. The hysteretic damping has an extra advantage of broadband isolation.  相似文献   

12.
A general nonlinear theory for the dynamics of elastic anisotropic circular cylindrical shells undergoing small strains and moderate-rotation vibrations is presented. The theory fully accounts for extensionality and geometric nonlinearities by using local stress and strain measures and an exact coordinate transformation, which result in nonlinear curvatures and strain-displacement expressions that contain the von Karman strains as a special case. Moreover, the linear part of the theory contains, as special cases, most of the classical linear theories when appropriate stress resultants and couples are defined. Parabolic distributions of the transverse shear strains are accounted for by using a third-order theory and hence shear correction factors are not required. Five third-order nonlinear partial differential equations describing the extension, bending, and shear vibrations of shells are obtained using the principle of virtual work and an asymptotic analysis. These equations show that laminated shells display linear elastic and nonlinear geometric couplings among all motions.  相似文献   

13.
A system of second-order nonlinear ordinary differential equations is considered. It is shown analytically that the solutions to this system are isochronous, which is not typical for nonlinear systems. It is also shown that a periodic delta function is a limit of the solution if the amplitude tends to infinity.  相似文献   

14.
广义非线性强度理论在岩石材料中的应用   总被引:8,自引:0,他引:8  
路德春  江强  姚仰平 《力学学报》2005,37(6):729-736
在已提出的广义非线性强度理论的基础上,结合岩石材料的力学特性,建立了岩石广 义非线性强度理论,该理论在$\pi$平面上的破坏函数为介于SMP准则和Mises准则 之间的光滑曲线,在子午面上的破坏函数为幂函数曲线. 通过已有不同岩石的真三 轴试验数据对岩石广义非线性强度理论的验证表明,岩石广义非线性强度理论可以 广泛地适用于各类岩石,描述其$\pi$平面上及子午面上的非线性强度特性;并利 用5种不同类型岩石的真三轴试验结果对岩石广义非线性强度理论和Hoek-Brown准 则进行比较,反映了所提岩石广义非线性强度理论的优越性.  相似文献   

15.
Nonlinear Dynamics - A nonlinear PID controller for robust tracking of second-order nonlinear systems is proposed, which consists in a classical PD structure plus a fractional-order nonlinear...  相似文献   

16.
This paper deals with the stability of continuous-time multidimensional nonlinear systems in the Roesser form. The concepts from 1D Lyapunov stability theory are first extended to 2D nonlinear systems and then to general continuous-time multidimensional nonlinear systems. To check the stability, a direct Lyapunov method is developed. While the direct Lyapunov method has been recently proposed for discrete-time 2D nonlinear systems, to the best of our knowledge what is proposed in this paper are the first results of this kind on stability of continuous-time multidimensional nonlinear systems. Analogous to 1D systems, a sufficient condition for the stability is the existence of a certain type of the Lyapunov function. A new technique for constructing Lyapunov functions for 2D nonlinear systems and general multidimensional systems is proposed. The proposed method is based on the sum of squares (SOS) decomposition, therefore, it formulates the Lyapunov function search algorithmically. In this way, polynomial nonlinearities can be handled exactly and a large class of other nonlinearities can be treated introducing some auxiliary variables and constrains.  相似文献   

17.
A fully nonlinear numerical method, developed on the basis of Euler equations, is used to study the dynamics of nonlinear gravity waves, mainly in the aspects of the propagation of Stokes wave with disturbed sidebands, the evolution of one wave packet and the interaction of two wave groups. These cases have previously been studied with the higher order spectral method, which will be an approximately fully nonlinear scheme if the order of nonlinearity is not large enough, while the present method in the case of the 2D model has an integration scheme that is exact to the computer precision. As expected, in most cases the results are consistent between these two numerical models and it is confirmed again that this fully nonlinear numerical model is also capable of maintaining a high accuracy and good convergence, particularly in the long-term evolutionary process.  相似文献   

18.
The accompanied slowly-variant-system of nonlinear dynamic systems   总被引:2,自引:0,他引:2  
The slowly-variant-system is defined and analyzed in this paper and the nonlinear relationship between its instantaneous parameters and the instantaneous amplitude and frequency of its free vibration response is established. By defining the band-pass mapping, a slowly-variant-system which we call the accompanied slowly-variant-system is extracted from the nonlinear system; and the relationship between the two systems is discussed. Also, the skeleton curves that can illustrate the nonlinearity and the main properties of the nonlinear system directly and concisely are defined. Work done in this paper opens a new way for nonlinearity detection and identification for nonlinear systems.  相似文献   

19.
《Comptes Rendus Mecanique》2017,345(6):386-398
Vibrations are classified among the major problems for engineering structures. Anti-vibration isolators are used to absorb vibration energy and minimise transmitted force which can cause damage. The isolator is modelled as a parallel combination of stiffness and damping elements. The main purpose of the model is to enable designers to predict the dynamic response of systems under different structural excitations and boundary conditions. A nonlinear identification method, discussed in this paper, aims to provide a tool for engineers to extract information about the nonlinear dynamic behaviour using measured data from experiments. The proposed method is demonstrated and validated with numerical simulations. Thus, this technique is applied to determine the nonlinear parameters of a commercial metal mesh isolator. Nonlinear stiffness and nonlinear damping can decrease with the increase in the amplitude of the base excitation. The softening behaviour of the mesh isolator is clearly visible.  相似文献   

20.
研究压电弯曲执行器在强电场作用下的非线性弯曲行为。考虑电致伸缩和电致弹性的非线性压电效应,导出了压电悬臂执行器自由端挠度或激励力和作用电场之间的非线性关系。结果表明,考虑非线性压电效应在很大的电场范围内都与实验结果吻合得很好,而线性压电效应只适合于低电场的情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号