首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The time evolution of finite amplitude axisymmetric perturbations (Taylor cells) to the purely azimuthal, viscoelastic, cylindrical Couette flow was numerically simulated. Two time integration numerical methods were developed, both based on a pseudospectral spatial approximation of the variables, efficiently implemented using fast Poisson solvers and optimal filtering routines. The first method, applicable for finite Re numbers, is based on a time-splitting integration with the divergence-free condition enforced through an influence matrix technique. The second one, is based on a semi-implicit time integration of the constitutive equation with both the continuity and the momentum equations enforced as constraints. Stability results for an upper convected Maxwell fluid were obtained for the supercritical bifurcations, either steady or time-periodic, developed after the onset of instabilities in the primary flow. At small elasticity values, ? ≡ De/Re, the time integration of finite amplitude disturbances confirms the stability of the single branch of steady Taylor cells. At intermediate ? values the rotating wave family of time-periodic solutions developed at the onset of instability is stable, whereas the standing wave is found to be unstable. At high ? values, and in particular for the limit of creeping flow (? = ∞), the present study shows that the rotating wave family is unstable and the standing (radial) wave is stable, in agreement with previous finite-element investigations. It is thus shown that spectral techniques provide a robust and computationally efficient method for the simulation of complex, non-linear, time-dependent viscoelastic flows.  相似文献   

2.
Kurdila  A.  Fitz-Coy  N.  McDaniel  D.  Webb  G. 《Nonlinear dynamics》1999,20(1):55-84
It is well known that when equations of motion are formulated using Lagrange multipliers for multibody dynamic systems, one obtains a redundant set of differential algebraic equations. Numerical integration of these equations can lead to numerical difficulties associated with constraint violation drift. One approach that has been explored to alleviate this difficulty has been contraint stabilization methods. In this paper, a family of stabilization methods are considered as partial feedback linearizing controllers. Several stabilization methods including the range space method, null space method, Baumgarte's method, and the damping and stiffness penalty methods are examined. Each can be construed as a particular partial feedback linearizing controller. The paper closes by comparing several of these constraint stabilization methods to another method suggested by construction: the variable structure sliding (VSS) control. The VSS method is found to be the most efficient, stable, and robust in the presence of singularities.  相似文献   

3.
In this paper, a new family of high‐order relaxation methods is constructed. These methods combine general higher‐order reconstruction for spatial discretization and higher order implicit‐explicit schemes or TVD Runge–Kutta schemes for time integration of relaxing systems. The new methods retain all the attractive features of classical relaxation schemes such as neither Riemann solvers nor characteristic decomposition are needed. Numerical experiments with the shallow‐water equations in both one and two space dimensions on flat and non‐flat topography demonstrate the high resolution and the ability of our relaxation schemes to better resolve the solution in the presence of shocks and dry areas without using either Riemann solvers or front tracking techniques. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
结构动力分析中时间积分方法进展   总被引:2,自引:1,他引:1  
叙述了结构动力分析中时间积分方法的最新发展情况,对这一领域的基本原理和思想进行了总结,重点介绍一些新型计算方法的基本性质,为时间积分方法的进一步研究奠定基础。  相似文献   

5.
无网格法直接通过节点信息构造形函数,不依赖于节点之间的有序单元连接,能够建立任意高阶连续的整体协调形函数。与传统的有限元法相比,无网格法对大变形问题、移动边界问题和高阶问题的求解方面有比较明显的优势。伽辽金型无网格法是目前应用最为广泛的一类无网格法。虽然无网格形函数本身不依赖于单元,但伽辽金型无网格法需要采取合适的方法进行弱形式的数值积分。由于无网格形函数一般不是多项式,具有非插值性且影响域与背景积分网格通常不重合,伽辽金型无网格法通常需要采用高阶的高斯积分进行数值积分,导致了计算效率低下,难于求解大型实际问题。因此,如何通过建立高效积分方法提高无网格法的计算效率成为无网格法研究领域的一个核心问题。本文对无网格法中强制边界条件的施加方法进行了简要归纳,总结了伽辽金型无网格法中若干常用的数值积分方法,并对伽辽金型无网格法的数值积分方法领域存在的一些问题进行了探讨。  相似文献   

6.
Summary In several fields of engineering research, particularly in the study of vibrations, electrical circuits and in some problems of fluid mechanics, approximations which lead to linear differential equations are proving inadequate. This circumstance is focussing the attention of research workers and engineers on non-linear problems. This article gives an account, without proofs, but with literature references, of methods for the qualitative integration of non-linear ordinary differential equations of the first order, i.e. for the determination of the pattern of the integral curves of such equations. The use of such geometrical methods becomes necessary in cases when the equation cannot be integrated in closed form. Simple and complex patterns associated with singular points are discussed, and criteria for their classification are given. A method of determining the asymptotic behaviour of the family of solutions is given, and criteria for the existence of closed curves in the family of solutions, as well as the occurrence of limit cycles, are discussed. A brief discussion of the Kronecker index and of the mutual relation between several singular points is added. The text is illustrated with several examples selected from the fields of vibration, compressible fluid flow and electrical circuits.  相似文献   

7.
In this article, a new methodology for developing discrete geometric conservation law (DGCL) compliant formulations is presented. It is carried out in the context of the finite element method for general advective–diffusive systems on moving domains using an ALE scheme. There is an extensive literature about the impact of DGCL compliance on the stability and precision of time integration methods. In those articles, it has been proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of its fixed‐grid counterpart. However, only a few works proposed a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based on an averaged ALE Jacobians formulation is obtained. This new formulation is applied to the θ family of time integration methods. In addition, an extension to the three‐point backward difference formula is given. With the aim to validate the averaged ALE Jacobians formulation, a set of numerical tests are performed. These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible Navier–Stokes equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A comparison of direct integration methods is made and their efficiency is investigated for impact problems. Newmark, Wilson–θ, Central Difference and Houbolt Methods are used as direct integration methods. Impact analysis includes that of elastic and large deformation based upon updated Lagrangian including buckling check. The results show that the direct integration methods give different results in different contact-impact cases.The English text was polished by Keren Wang  相似文献   

9.
本文提出了结构动力学方程求解的一类二次加速度逐步积分法,推导了计算公式,分析了积分稳定性和精度。通过理论分析和具体算例表明,这种方法具有相当高的积分精度,但积分是条件稳定的。  相似文献   

10.
Chang  Shuenn-Yih 《Nonlinear dynamics》2020,101(2):1473-1500
Nonlinear Dynamics - A class of nonlinear velocity-dependent problems must be solved iteratively for conventional integration methods since there exists no completely explicit integration method...  相似文献   

11.
扩散方程单内点精细积分法与差分法比较研究   总被引:3,自引:0,他引:3  
一维扩散方程初值问题可以用全域或子域精细积分求解。子域积分可以采用不同数量的内点,单内点是其最简单的情况。当单内点精细积分中的传递函数即指数函数用其泰勒展开式的一阶近似来替代时,精细积分转化为差分方程。本文研究了这一对应关系。各种常见差分格式均找到了对应的单点精细积分格式,并在单点精细积分一般公式中得到了统一表达形式  相似文献   

12.
Selected finite element Eulerian-Lagrangian methods for the solution of the transport equation are compared systematically in the relatively simple context of 1D, constant coefficient, conservative problems. A combination of formal analysis and numerical experimentation is used to characterize the stability and accuracy that results from alternative treatments of the concentrations at the feet of the characteristic lines. Within the methods analyzed, those that approach such treatment with the perspective of ‘integration’ rather than ‘interpolation’ tend to have superior accuracy. Exact integration leads to unconditional stability and excellent accuracy. Quadrature integration leads only to conditional stability, but newly derived criteria show that stability restrictions are relatively mild and should not preclude the usefulness of quadrature integration methods in a range of practical applications. While conclusions cannot be extended directly to multiple dimensions and complex flows and geometries, results should provide useful insight to the development and behaviour of specific Eulerian-Lagrangian transport models.  相似文献   

13.
Extending fixed‐grid time integration schemes for unsteady CFD applications to moving grids, while formally preserving their numerical stability and time accuracy properties, is a nontrivial task. A general computational framework for constructing stability‐preserving ALE extensions of Eulerian multistep time integration schemes can be found in the literature. A complementary framework for designing accuracy‐preserving ALE extensions of such schemes is also available. However, the application of neither of these two computational frameworks to a multistage method such as a Runge–Kutta (RK) scheme is straightforward. Yet, the RK methods are an important family of explicit and implicit schemes for the approximation of solutions of ordinary differential equations in general and a popular one in CFD applications. This paper presents a methodology for filling this gap. It also applies it to the design of ALE extensions of fixed‐grid explicit and implicit second‐order time‐accurate RK (RK2) methods. To this end, it presents the discrete geometric conservation law associated with ALE RK2 schemes and a method for enforcing it. It also proves, in the context of the nonlinear scalar conservation law, that satisfying this discrete geometric conservation law is a necessary and sufficient condition for a proposed ALE extension of an RK2 scheme to preserve on moving grids the nonlinear stability properties of its fixed‐grid counterpart. All theoretical findings reported in this paper are illustrated with the ALE solution of inviscid and viscous unsteady, nonlinear flow problems associated with vibrations of the AGARD Wing 445.6. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In the general theory of continuum mechanics, the state of rotation and deformation of material points can be uniquely defined from the displacement field by using the nine independent components of the displacement gradients. For this reason, the use of the absolute rotation parameters as nodal coordinates, without relating them to the displacement gradients, leads to coordinate redundancy that leads to numerical and fundamental problems in many existing large rotation finite element formulations. Because of this fundamental problem, special measures that require modifications of the numerical integration methods were proposed in the literature in order to satisfy the principle of work and energy. As demonstrated in this paper, no such measures need to be taken when the finite element absolute nodal coordinate formulation is used since the principle of work and energy are automatically satisfied. This formulation does not suffer from the problem of coordinate redundancy and ensures the continuity of stresses and strains at the nodal points. In this study, the use of the implicit integration methods with the consistent Lagrangian elasto-plastic tangent moduli is examined when the absolute nodal coordinate formulation is used. The performance of different numerical integration methods in the dynamic analysis of large elasto-plastic deformation problems is investigated. It is shown that all these methods, in the case of convergence, yield a solution that satisfies the principle of work and energy without the need of taking any special measures. Semi-implicit integration methods, however, can lead to numerical difficulties in the case of very stiff problems due to the linearization made in these methods in order to avoid the iterative Newton--Raphson procedure. It is also demonstrated that the use of the consistent Lagrangian-plastic tangent moduli derived in this investigation using the absolute nodal coordinate formulation leads to better convergence of the iterative Newton--Raphson procedure used in the implicit integration methods.  相似文献   

15.
In residual-stress measurement by the holedrilling technique, accuracy can be enhanced if the proper values for the relleved-strain coefficients are employed. These values are obtained by double integration of the relieved strain over the area of the grid. In this paper, several methods customarily used in the literature for the calculation of these coefficients are discussed. A comparison of the coefficients from these methods and those derived by double integration demonstrate the increased accuracy of the latter.  相似文献   

16.
The subsystem synthesis method has been developed in order to improve computational efficiency for a multibody vehicle dynamics model. Using the subsystem synthesis method, equations of motion of the base body and each subsystem can be solved separately. In the subsystem synthesis method, various coordinate systems can be used and various integration methods can be applied in each subsystem, as long as the effective mass matrix and the effective force vector are properly produced. In this paper, comparative study has been carried out for the subsystem synthesis method with Cartesian coordinates and with joint relative coordinates. Two different integration methods such as an explicit integrator and an explicit implicit integrator are employed. In order to see the accuracy and computational efficiency from the different models based on the different coordinate systems and different integration methods, a rough terrain run simulations has been carried out with a 6 × 6 off-road multibody vehicle model.  相似文献   

17.
The finite element absolute nodal coordinate formulation (ANCF) is often used in modeling very flexible bodies in multibody system (MBS) applications. This formulation leads to a constant mass matrix, allowing for an efficient sparse matrix implementation. Nonetheless, the use of the ANCF finite elements to model stiff structures can lead to high frequencies associated with ANCF coupled deformation modes, as discussed in the literature. Implicit numerical integration methods can be effectively used to develop efficient procedures for the solution of MBS differential/algebraic equations. Most existing implicit integration algorithms, however, require numerical differentiation of the equations of motion, and some of these integration methods do not ensure that the kinematic algebraic constraint equations are satisfied at all levels (position, velocity, and acceleration). Because of these limitations, existing implicit integration methods can be less accurate and less efficient when used to solve large scale MBS applications. In order to circumvent this problem, the two-loop implicit sparse matrix numerical integration (TLISMNI) method was proposed for the solution of MBS differential/algebraic equations. The TLISMNI method does not require numerical differentiation of the forces and allows for an efficient sparse matrix implementation. This paper discusses TLISMNI implementation issues including the step size selection, the error control, and the effect of the numerical damping. The relation between the step size selection and the structure stiffness is also discussed. The use of the computer implementation described in this paper is demonstrated by solving very stiff structure problems using the Hilber?CHughes?CTaylor (HHT) method, which includes numerical damping. An eigenvalue analysis and Fast Fourier Transform (FFT) are performed in order to identify the fundamental modes of deformation and demonstrate that the contributions of these fundamental modes can be erroneously damped out when some other implicit integration methods are used. The TLISMNI method, on the other hand, captures the contributions of these fundamental modes. The results, obtained using the TLISMNI method, are compared with the results obtained using other methods including the implicit HHT-I3 and the explicit Adams integration methods. The results obtained show that the TLISMNI method can be five times faster than the other two methods when no numerical damping is considered.  相似文献   

18.
为满足航天工程对轨道计算精度和实时性的高要求,近年来发展出了可以通过大步长积分修正实现快速精确求解的积分修正类方法.积分修正类方法有可并行计算的特点,然而在串行计算环境下会受到计算资源的限制,无法充分发挥其可并行加速的优势.此外,合理的计算参数通常难以预先确定,也使积分修正类方法大步长快速计算的优势难以充分体现.针对以上问题,利用积分修正类方法可并行计算的特点,提出了并行加速的局部变分迭代法PA-LVIM,通过将传统局部变分迭代法LVIM的并行计算量均摊到多个计算节点上,显著提高了计算速度.此外,还使用根据系统状态二阶导数分布确定计算参数的打磨法优化了PA-LVIM的计算参数,进一步发挥了其大步长快速计算的优势.求解了三个经典的轨道递推问题,仿真结果表明, PA-LVIM的加速效果明显,且经打磨法优化计算参数后,其计算效率又进一步得到提高,将当前主流方法的计算效率提高了5倍以上.  相似文献   

19.
薄板弯曲分析的高阶高效无网格法   总被引:2,自引:0,他引:2  
与传统有限元法相比,无网格法具有节点形函数高度光滑、易于形成高阶近似等优势,更适合于以薄板弯曲问题为代表的高阶偏微分方程的数值求解。然而,高阶无网格法的形函数是非多项式的有理函数,导致弱形式的区域积分难以得到精确计算,通常采用的高阶高斯积分方法需使用大量积分点,计算效率低且精度不高。本文针对薄板弯曲问题的高阶(三阶)无网格法分析,首次发展了与该高阶近似相一致的曲率光顺方案,并基于背景三角形积分单元建立了相应的数值积分格式,大幅度减少了所需的积分点数目。所发展方法的关键在于计算刚度阵所需的形函数的二阶导数由形函数及其一阶导数通过散度定理确定,而非对形函数直接求导获得。数值结果表明,基于标准的高斯积分方案的高阶无网格法精度不高,不能精确再现纯弯曲和线性弯曲模式,且得到的弯矩场分布存在严重的虚假数值振荡。而本文所建议的基于曲率光顺方案的高阶无网格法能够方便高效地求解薄板弯曲问题,尤其是它能精确反映纯弯曲和线性弯曲模式。与标准的高斯积分方法和目前主流的常曲率光顺方法相比,本文方法在计算效率、精度、弯矩分布等方面均展现出显著优势,因而具有较好的应用价值。  相似文献   

20.
IntroductionInmodelingfordynamicsystem ,weoftengetnonlinearitymathematicalequation .Itisdifficulttogiveoutpureanalyticresolutiontotheequation ,mostanswersworkedoutaredependentuponnumericalsolution .Hence,itisextremelyimportanttofindoutasuitableapproximat…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号