首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximate or exact Riemann solvers play a key role in Godunov‐type methods. In this paper, three approximate Riemann solvers, the MFCAV, DKWZ and weak wave approximation method schemes, are investigated through numerical experiments, and their numerical features, such as the resolution for shock and contact waves, are analyzed and compared. Based on the analysis, two new adaptive Riemann solvers for general equations of state are proposed, which can resolve both shock and contact waves well. As a result, an ALE method based on the adaptive Riemann solvers is formulated. A number of numerical experiments show good performance of the adaptive solvers in resolving both shock waves and contact discontinuities. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
We present a Roe‐type weak formulation Riemann solver where the average coefficient matrix is computed numerically. The novelty of this approach is that it is general enough that can be applied to any hyperbolic system while retaining the accuracy of the original Roe solver. We show applications to the compressible Euler equations with general equation of state. An alternative version of the method uses directly the eigenvectors in the averaging process, simplifying the algorithm. These new solvers are applied in conservative and path‐conservative schemes with high‐order accuracy and on unstructured meshes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This article presents a novel shock‐capturing technique for the discontinuous Galerkin (DG) method. The technique is designed for compressible flow problems, which are usually characterized by the presence of strong shocks and discontinuities. The inherent structure of standard DG methods seems to suggest that they are especially adapted to capture shocks because of the numerical fluxes based on suitable approximate Riemann solvers, which, in practice, introduces some stabilization. However, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for large high‐order elements. Here, a new basis of shape functions is introduced. It has the ability to change locally between a continuous or discontinuous interpolation depending on the smoothness of the approximated function. In the presence of shocks, the new discontinuities inside an element introduce the required stabilization because of numerical fluxes. Large high‐order elements can therefore be used and shocks captured within a single element, avoiding adaptive mesh refinement and preserving the locality and compactness of the DG scheme. Several numerical examples for transonic and supersonic flows are studied to demonstrate the applicability of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
We propose a variable relaxation scheme for the simulation of 1D, two-phase, multicomponent flow in porous media. For these strongly nonlinear systems, traditional high order upwind schemes are impractical: Riemann solutions are not directly available when the phase behavior is complex, and the systems are weakly hyperbolic at isolated points. Relaxation schemes avoid the dependency on the eigenstructure and nonlinear Riemann solvers by approximating the original system with a strongly hyperbolic linear system. We exploit the known information about the eigenvalues to construct first order and second order variable relaxation schemes with much reduced numerical diffusion as compared to the standard relaxation formulations. The proposed second order variable relaxation scheme is competitive in accuracy and efficiency with a third order component-wise ENO reconstruction, and performs at least as well as second order component-wise TVD schemes.  相似文献   

6.
A finite‐volume multi‐stage (FMUSTA) scheme is proposed for simulating the free‐surface shallow‐water flows with the hydraulic shocks. On the basis of the multi‐stage (MUSTA) method, the original Riemann problem is transformed to an independent MUSTA mesh. The local Lax–Friedrichs scheme is then adopted for solving the solution of the Riemann problem at the cell interface on the MUSTA mesh. The resulting first‐order monotonic FMUSTA scheme, which does not require the use of the eigenstructure and the special treatment of entropy fixes, has the generality as well as simplicity. In order to achieve the high‐resolution property, the monotonic upstream schemes for conservation laws (MUSCL) method are used. For modeling shallow‐water flows with source terms, the surface gradient method (SGM) is adopted. The proposed schemes are verified using the simulations of six shallow‐water problems, including the 1D idealized dam breaking, the steady transcritical flow over a hump, the 2D oblique hydraulic jump, the circular dam breaking and two dam‐break experiments. The simulated results by the proposed schemes are in satisfactory agreement with the exact solutions and experimental data. It is demonstrated that the proposed FMUSTA schemes have superior overall numerical accuracy among the schemes tested such as the commonly adopted Roe and HLL schemes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The Riemann solver is the fundamental building block in the Godunov‐type formulation of many nonlinear fluid‐flow problems involving discontinuities. While existing solvers are obtained either iteratively or through approximations of the Riemann problem, this paper reports an explicit analytical solution to the exact Riemann problem. The present approach uses the homotopy analysis method to solve the nonlinear algebraic equations resulting from the Riemann problem. A deformation equation defines a continuous variation from an initial approximation to the exact solution through an embedding parameter. A Taylor series expansion of the exact solution about the embedding parameter provides a series solution in recursive form with the initial approximation as the zeroth‐order term. For the nonlinear shallow‐water equations, a sensitivity analysis shows fast convergence of the series solution and the first three terms provide highly accurate results. The proposed Riemann solver is implemented in an existing finite‐volume model with a Godunov‐type scheme. The model correctly describes the formation of shocks and rarefaction fans for both one and two‐dimensional dam‐break problems, thereby verifying the proposed Riemann solver for general implementation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Numerical methods have become well established as tools for solving problems in hydraulic engineering. In recent years the finite volume method (FVM) with shock capturing capabilities has come to the fore because of its suitability for modelling a variety of types of flow; subcritical and supercritical; steady and unsteady; continuous and discontinuous and its ability to handle complex topography easily. This paper is an assessment and comparison of the performance of finite volume solutions to the shallow water equations with the Riemann solvers; the Osher, HLL, HLLC, flux difference splitting (Roe) and flux vector splitting. In this paper implementation of the FVM including the Riemann solvers, slope limiters and methods used for achieving second order accuracy are described explicitly step by step. The performance of the numerical methods has been investigated by applying them to a number of examples from the literature, providing both comparison of the schemes with each other and with published results. The assessment of each method is based on five criteria; ease of implementation, accuracy, applicability, numerical stability and simulation time. Finally, results, discussion, conclusions and recommendations for further work are presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes the implementation of a numerical solver that is capable of simulating compressible flows of nonideal single‐phase fluids. The proposed method can be applied to arbitrary equations of state and is suitable for all Mach numbers. The pressure‐based solver uses the operator‐splitting technique and is based on the PISO/SIMPLE algorithm: the density, velocity, and temperature fields are predicted by solving the linearized versions of the balance equations using the convective fluxes from the previous iteration or time step. The overall mass continuity is ensured by solving the pressure equation derived from the continuity equation, the momentum equation, and the equation of state. Nonphysical oscillations of the numerical solution near discontinuities are damped using the Kurganov‐Tadmor/Kurganov‐Noelle‐Petrova (KT/KNP) scheme for convective fluxes. The solver was validated using different test cases, where analytical and/or numerical solutions are present or can be derived: (1) A convergent‐divergent nozzle with three different operating conditions; (2) the Riemann problem for the Peng‐Robinson equation of state; (3) the Riemann problem for the covolume equation of state; (4) the development of a laminar velocity profile in a circular pipe (also known as Poiseuille flow); (5) a laminar flow over a circular cylinder; (6) a subsonic flow over a backward‐facing step at low Reynolds numbers; (7) a transonic flow over the RAE 2822 airfoil; and (8) a supersonic flow around a blunt cylinder‐flare model. The spatial approximation order of the scheme is second order. The mesh convergence of the numerical solution was achieved for all cases. The accuracy order for highly compressible flows with discontinuities is close to first order and, for incompressible viscous flows, it is close to second order. The proposed solver is named rhoPimpleCentralFoam and is implemented in the open‐source CFD library OpenFOAM®. For high speed flows, it shows a similar behavior as the KT/KNP schemes (implemented as rhoCentralFoam‐solver, Int. J. Numer. Meth. Fluids 2010), and for flows with small Mach numbers, it behaves like solvers that are based on the PISO/SIMPLE algorithm.  相似文献   

10.
The present paper addresses the numerical solution of turbulent flows with high‐order discontinuous Galerkin methods for discretizing the incompressible Navier‐Stokes equations. The efficiency of high‐order methods when applied to under‐resolved problems is an open issue in the literature. This topic is carefully investigated in the present work by the example of the three‐dimensional Taylor‐Green vortex problem. Our implementation is based on a generic high‐performance framework for matrix‐free evaluation of finite element operators with one of the best realizations currently known. We present a methodology to systematically analyze the efficiency of the incompressible Navier‐Stokes solver for high polynomial degrees. Due to the absence of optimal rates of convergence in the under‐resolved regime, our results reveal that demonstrating improved efficiency of high‐order methods is a challenging task and that optimal computational complexity of solvers and preconditioners as well as matrix‐free implementations are necessary ingredients in achieving the goal of better solution quality at the same computational costs already for a geometrically simple problem such as the Taylor‐Green vortex. Although the analysis is performed for a Cartesian geometry, our approach is generic and can be applied to arbitrary geometries. We present excellent performance numbers on modern cache‐based computer architectures achieving a throughput for operator evaluation of 3·108 up to 1·109 DoFs/s (degrees of freedom per second) on one Intel Haswell node with 28 cores. Compared to performance results published within the last five years for high‐order discontinuous Galerkin discretizations of the compressible Navier‐Stokes equations, our approach reduces computational costs by more than one order of magnitude for the same setup.  相似文献   

11.
We develop and analyse an improved version of the multi‐stage (MUSTA) approach to the construction of upwind Godunov‐type fluxes whereby the solution of the Riemann problem, approximate or exact, is not required. The new MUSTA schemes improve upon the original schemes in terms of monotonicity properties, accuracy and stability in multiple space dimensions. We incorporate the MUSTA technology into the framework of finite‐volume weighted essentially nonoscillatory schemes as applied to the Euler equations of compressible gas dynamics. The results demonstrate that our new schemes are good alternatives to current centred methods and to conventional upwind methods as applied to complicated hyperbolic systems for which the solution of the Riemann problem is costly or unknown. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a new high‐order approach to the numerical solution of the incompressible Stokes and Navier–Stokes equations. The class of schemes developed is based upon a velocity–pressure–pressure gradient formulation, which allows: (i) high‐order finite difference stencils to be applied on non‐staggered grids; (ii) high‐order pressure gradient approximations to be made using standard Padé schemes, and (iii) a variety of boundary conditions to be incorporated in a natural manner. Results are presented in detail for a selection of two‐dimensional steady‐state test problems, using the fourth‐order scheme to demonstrate the accuracy and the robustness of the proposed methods. Furthermore, extensions to higher orders and time‐dependent problems are illustrated, whereas the extension to three‐dimensional problems is also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The remap phase in arbitrary Lagrangian–Eulerian (ALE) hydrodynamics involves the transfer of field quantities defined on a post‐Lagrangian mesh to some new mesh, usually generated by a mesh optimization algorithm. This problem is often posed in terms of transporting (or advecting) some state variable from the old mesh to the new mesh over a fictitious time interval. It is imperative that this remap process be monotonic, that is, not generate any new extrema in the field variables. It is well known that the only linear methods that are guaranteed to be monotonic for such problems are first‐order accurate; however, much work has been performed in developing non‐linear methods, which blend both high and low (first) order solutions to achieve monotonicity and preserve high‐order accuracy when the field is sufficiently smooth. In this paper, we present a set of methods for enforcing monotonicity targeting high‐order discontinuous Galerkin methods for advection equations in the context of high‐order curvilinear ALE hydrodynamics. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

14.
This paper describes a new class of three‐dimensional finite difference schemes for high‐speed turbulent flows in complex geometries based on the high‐order monotonicity‐preserving (MP) method. Simulations conducted for various 1D, 2D, and 3D problems indicate that the new high‐order MP schemes can preserve sharp changes in the flow variables without spurious oscillations and are able to capture the turbulence at the smallest computed scales. Our results also indicate that the MP method has less numerical dissipation and faster grid convergence than the weighted essentially non‐oscillatory method. However, both of these methods are computationally more demanding than the COMP method and are only used for the inviscid fluxes. To reduce the computational cost for reacting flows, the scalar equations are solved by the COMP method, which is shown to yield similar results to those obtained by the MP in supersonic turbulent flows with strong shock waves. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We present a theoretical solution for the Riemann problem for the five‐equation two‐phase non‐conservative model of Saurel and Abgrall. This solution is then utilized in the construction of upwind non‐conservative methods to solve the general initial‐boundary value problem for the two‐phase flow model in non‐conservative form. The basic upwind scheme constructed is the non‐conservative analogue of the Godunov first‐order upwind method. Second‐order methods in space and time are then constructed via the MUSCL and ADER approaches. The methods are systematically assessed via a series of test problems with theoretical solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Several explicit high‐resolution schemes for transient compressible flows with moving shocks are combined in such a way so as to achieve the highest possible speed without compromising accuracy. The main algorithmic changes considered comprise the following:
  • replacing limiting and approximate Riemann solvers by simpler schemes during the initial stages of Runge–Kutta solvers, and only using limiting and approximate Riemann solvers for the last stage;
  • automatically switching to simpler schemes for smooth flow regions;
  • automatic deactivation of quiescent regions; and
  • unstructured grids with cartesian cores or embedded cartesian grids.
The results from several examples demonstrate that speedup factors of 1:4 are attainable without compromising the accuracy of the traditional FCT schemes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
18.
This article presents a numerical model that enables to solve on unstructured triangular meshes and with a high order of accuracy, Riemann problems that appear when solving hyperbolic systems. For this purpose, we use a MUSCL‐like procedure in a ‘cell‐vertex’ finite‐volume framework. In the first part of this procedure, we devise a four‐state bi‐dimensional HLL solver (HLL‐2D). This solver is based upon the Riemann problem generated at the barycenter of a triangular cell, from the surrounding cell‐averages. A new three‐wave model makes it possible to solve this problem, approximately. A first‐order version of the bi‐dimensional Riemann solver is then generated for discretizing the full compressible Euler equations. In the second part of the MUSCL procedure, we develop a polynomial reconstruction that uses all the surrounding numerical data of a given point, to give at best third‐order accuracy. The resulting over determined system is solved by using a least‐square methodology. To enforce monotonicity conditions into the polynomial interpolation, we use and adapt the monotonicity‐preserving limiter, initially devised by Barth (AIAA Paper 90‐0013, 1990). Numerical tests and comparisons with competing numerical methods enable to identify the salient features of the whole model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we consider edge‐based reconstruction (EBR) schemes for solving the Euler equations on unstructured tetrahedral meshes. These schemes are based on a high‐accuracy quasi‐1D reconstruction of variables on an extended stencil along the edge‐based direction. For an arbitrary tetrahedral mesh, the EBR schemes provide higher accuracy in comparison with most second‐order schemes at rather low computational costs. The EBR schemes are built in the framework of vertex‐centered formulation for the point‐wise values of variables. Here, we prove the high accuracy of EBR schemes for uniform grid‐like meshes, introduce an economical implementation of quasi‐one‐dimensional reconstruction and the resulting new scheme of EBR family, estimate the computational costs, and give new verification results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We extend the explicit in time high‐order triangular discontinuous Galerkin (DG) method to semi‐implicit (SI) and then apply the algorithm to the two‐dimensional oceanic shallow water equations; we implement high‐order SI time‐integrators using the backward difference formulas from orders one to six. The reason for changing the time‐integration method from explicit to SI is that explicit methods require a very small time step in order to maintain stability, especially for high‐order DG methods. Changing the time‐integration method to SI allows one to circumvent the stability criterion due to the gravity waves, which for most shallow water applications are the fastest waves in the system (the exception being supercritical flow where the Froude number is greater than one). The challenge of constructing a SI method for a DG model is that the DG machinery requires not only the standard finite element‐type area integrals, but also the finite volume‐type boundary integrals as well. These boundary integrals pose the biggest challenge in a SI discretization because they require the construction of a Riemann solver that is the true linear representation of the nonlinear Riemann problem; if this condition is not satisfied then the resulting numerical method will not be consistent with the continuous equations. In this paper we couple the SI time‐integrators with the DG method while maintaining most of the usual attributes associated with DG methods such as: high‐order accuracy (in both space and time), parallel efficiency, excellent stability, and conservation. The only property lost is that of a compact communication stencil typical of time‐explicit DG methods; implicit methods will always require a much larger communication stencil. We apply the new high‐order SI DG method to the shallow water equations and show results for many standard test cases of oceanic interest such as: standing, Kelvin and Rossby soliton waves, and the Stommel problem. The results show that the new high‐order SI DG model, that has already been shown to yield exponentially convergent solutions in space for smooth problems, results in a more efficient model than its explicit counterpart. Furthermore, for those problems where the spatial resolution is sufficiently high compared with the length scales of the flow, the capacity to use high‐order (HO) time‐integrators is a necessary complement to the employment of HO space discretizations, since the total numerical error would be otherwise dominated by the time discretization error. In fact, in the limit of increasing spatial resolution, it makes little sense to use HO spatial discretizations coupled with low‐order time discretizations. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号