首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
刘阁  陈彬  张贤明 《应用力学学报》2012,29(2):120-126,235
根据水击在管段内形成的驻波场现象,分析了流体内分散相颗粒受到的驻波作用力;运用李雅普诺夫稳定判据研究了颗粒积聚与分离的机理;考虑到颗粒运动方程的严重刚性而很难进行数值求解,采用相空间和非对称分析方法获得了分散相颗粒的运动轨迹近似解,并进行了实验验证。结果表明:水击驻波场中分散相颗粒的受力方程中惯性项对颗粒初始运动速率的影响不可忽略;在水击驻波波节的±λ/4范围内,分散相颗粒经过一定的时间会发生积聚,其运动速度呈对称分布,最大速度出现在3λ/8位置处;随着分散相颗粒粒径和密度等物性参数以及水击驻波的频率和连续相初始速度的增大,颗粒达到平衡位置的时间呈减小趋势,且连续相的初始速度对颗粒到达波节时间的影响显著。  相似文献   

2.
海堤越浪的数值模拟   总被引:9,自引:0,他引:9  
基于RANS方程和两方程湍流模型,采用有限体积法,将人射波波场作为人工的分布源项加人动量方程,提出了适用于VOF方法的源造波一消波技术。通过对行波及驻波的计算,分别考察了数值波浪水槽前端及末端消波段的有效性。在本文建立的数值波浪水槽内对规则波在海堤上爬高和越浪过程进行了数值模拟,并将计算结果与现有实验结果进行了比较。验证计算结果表明,数值模拟结果较好地复演了海堤越浪过程。为了研究模型尺度对越浪量的影响,文中设计了一组满足重力相似但具有不同几何比尺的数值实验模型。系列数值实验结果表明,若按重力相似换算越浪量,计算结果与实验预报值间的偏差随模型比尺的增大和堤前波浪破碎强度的增强而增大,建议在进行越浪物理模型实验时需进一步考虑模型比尺对原型预报值的影响。  相似文献   

3.
本文在以为反应流体动力学方程组的能量方程中加入激光源项,分别计算了透明玻璃窗口和镀铝窗口复盖下PETN炸药激光引爆的临界参数和炸药表面的温度和压力。结果表明,这两种窗口情况下,炸药起爆都是热机制。  相似文献   

4.
本文建立了描述一维有限振幅空气驻波声场定解总理2的数理模型,然后在此基础上应用伽辽金法,研究声源激励频率和声压级两参数变化时有限振幅驻波声场中的亚谐共振现象,并对所得计算结果作了定性分析。  相似文献   

5.
粘性流体中弹性板振动的有限元耦合问题   总被引:1,自引:0,他引:1  
流体-结构耦合作用问题是工程中比较常见的问题,具有重要意义,由于流体计算的复杂性,迄今为止,大部分的流体-结构耦合分析都是建立在对流体充分简化的基础上,尤其是将流体视为无粘、无旋的理想流体。该文在近年来前人工作的基础上,发展了一种流体-弹性结构耦合计算模式。流体视为不可压、有粘的介质,流场没有自由表面。该文采用SU/PG方法形成流体的有限元方程,采用ALE格式处理流体和结构之间的移动界面。采用预估  相似文献   

6.
兰黔章  项海帆 《力学季刊》1998,19(3):179-184
采用雷诺平均Navier-Stokes方程和在连续方程增加压力对时间导致数项的拟压缩性方法,计算桥梁主梁断面气动特性,数值计算过程采用基于中心差分近似和Runge-Kutta时间推进的格点有限体积多重网格法,湍流模式采用Baldwin-Lonmax代数模式,以虎门桥主梁断面计算为例,计算的空气动力特性与风洞试验数据吻合很好,本文方法具有占机内存小,计算时间短的优点。  相似文献   

7.
考虑粘性作用情况下船在船厢中运动的水动力学分析   总被引:1,自引:1,他引:0  
从根据浅水特性在垂直方向所平均化的N-S方程出发,利用有限元计算船舶进出船厢时的水动力学过程和船舶运动过程中的升沉、纵倾及船舶与厢底的最小间隙.由于在平均过程中保留了粘性项,同时产生了底摩擦项,使得到的数学方程更接近真实物理问题,另一方面也增加数值计算的稳定性.本文提出了随非惯性系一起运动的开边界的辐射条件.关于压力的求解,在船底与自由表面分别利用压力泊松方程求压力及自由表面利用连续方程求波高的求解方法.由针对三峡升船机的数值模拟的计算结果看,计算结果合理,计算方法稳定.  相似文献   

8.
行波型超声波电机摩擦特性的实验研究   总被引:2,自引:1,他引:2  
超声波电机是通过逆压电效应产生高频振动并通过摩擦实现驱动的电机,其定转子摩擦接触面的高频、微幅的行波振动有其特殊性,跟以往的摩擦接触显著不同,并对电机的换能效率、电机寿命和摩擦材料的选择等都有影响.本文建立了超声波电机定转子接触面摩擦系数测量装置,通过试验比较了摩擦接触面在常规、定子驻波振动以及行波振动下的动态摩擦系数,分析了定子相对转速(速度)、预紧力以及温度对定转子接触面摩擦系数的影响.根据摩擦二项式和电机定转子表面弹塑性接触状态对摩擦系数与预紧力等的对应关系进行了说明,分析了驻波振动和行波振动的超声减摩效果以及温度对摩擦系数的影响,确定了适合行波型超声波电机的摩擦系数计算模型.超声波电机的驱动摩擦特性是1项基础性工作,有助于行波形超声波电机设计、建模和驱动控制等.  相似文献   

9.
王裴  秦承森 《爆炸与冲击》2003,23(2):157-162
根据变分原理,计算了各表面散热条件不同的有限长圆柱含能材料的热爆炸临界参数和临界温度,研究了长径比对热爆炸临界参数和临界温度的影响;计算了各表面散热条件不同的有限长圆柱材料的热爆炸临界参数,得出了Biot数和对热爆炸临界参数和临界温度的作用。计算表明,用变分的方法将求解热爆炸导热方程问题转化为对一个特征值方程求解,求解过程要简单得多,且精度高、速度快。  相似文献   

10.
提出了一种固体表面热变形求解新方法(ITD),由此研究了热变形对高速点接触弹流润滑行为的影响. 为此,基于计入流体惯性项的Reynolds方程获得了油膜压力,采用追赶法对润滑剂和接触固体的温度进行了求解,进而研究了不同工况下有无热变形的高速点接触非牛顿热弹流润滑性能. 采用有限元法和离散累加法对ITD法进行了验证,通过中心膜厚试验验证了考虑热变形的正确性. 结果表明:ITD法可准确快速地计算表面热变形;考虑热变形后,油膜厚度降低且向油膜出口倾斜,考虑热变形后的中心膜厚更接近试验结果.   相似文献   

11.
IntroductionIn 1 83 1 ,Faraday[1]reportedhisexperimentalobservationofsurfacewavesindifferentfluidscoveringahorizontalplatesubjectedtoaverticalvibration ,andheobservedthesurfacestandingwavesoffluidsliketheteethofaveryshortcoarsecomb .Heremarksthatthesesurfacewaveshaveafrequencyequaltoonehalfthatoftheexcitation .ThisisthefamousFaradayexperiment.WedesignatethosefluidsurfacewavesformedbyverticallyexcitationandhaveafrequencyequaltoonehalfthatoftheexcitationasFaradaywaves.FollowingthisproblemMatth…  相似文献   

12.
In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single free surface standing wave including the effect of surface tension. A nonlinear slowly varying amplitude equation, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from potential flow equation. The results show that, when forced frequency is lower, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is higher, the surface tension can not be neglected. This proved that the surface tension causes free surface returning to equilibrium location. In addition, due to considering the effect of surface tension, the theoretical result approaches to experimental results much more than that of no surface tension.  相似文献   

13.
Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier–Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated.  相似文献   

14.
Singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single interface standing wave in a two-layer liquid-filled circular cylindrical vessel, which is subjected to a vertical periodical oscillation. It is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear amplitude equation including cubic nonlinear and vertically forced terms, was derived by the method of expansion of two-time scales without taking the influence of surface tension into account. By numerical computation, it is shown that different patterns of interface standing wave can be excited for different driving frequency and amplitude. We found that the interface wave mode become more and more complex as increasing of upper to lower layer density ratio γγ. The traits of the standing interface wave were proved theoretically. In addition, the dispersion relation and nonlinear amplitude equation obtained in this article can reduce to the known results for a single fluid when γ=0,h2h1γ=0,h2h1.  相似文献   

15.
The nonlinear vibration fundamental equation of circular sandwich plate under uniformed load and circumjacent load and the loosely clamped boundary condi- tion were established by von Karman plate theory,and then accordingly exact solution of static load and its numerical results were given.Based on time mode hypothesis and the variational method,the control equation of the space mode was derived,and then the amplitude frequency-load character relation of circular sandwich plate was obtained by the modified iteration method.Consequently the rule of the effect of the two kinds of load on the vibration character of the circular sandwich plate was investigated.When circumjacent load makes the lowest natural frequency zero,critical load is obtained.  相似文献   

16.
In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions is developed in weakly viscous fluids to investigate the motion of single free surface standing wave by linearizing the Navier-Stokes equation. The fluid field is divided into an outer potential flow region and an inner boundary layer region. The solutions of both two regions are obtained and a linear amplitude equation incorporating damping term and external excitation is derived. The condition to appear stable surface wave is obtained and the critical curve is determined. In addition, an analytical expression of damping coefficient is determined. Finally, the dispersion relation, which has been derived from the inviscid fluid approximation, is modified by adding linear damping. It is found that the modified results are reasonably closer to experimental results than former theory. Result shows that when forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when forcing frequency is high, the surface tension of the fluid is prominent.  相似文献   

17.
An investigation is described for instability problem of flow through a.pipe of circular cross section. As a disturbance motion, we consider an axisymmetric nonlinear mode. An associated amplitude or modulation equation has been derived for this perturbation. This equation belongs to the diffusion type. The coefficient of it can be negative with Reynolds number increasing, because of the complex interaction between molecular diffusion and convection. The negative diffusion, when it occurs, cause a concentration and focusing of energy within the decaying slug, acting as a role of reversing natural decays.  相似文献   

18.
We study the nonlinear stability of electrohydrodynamic of a cylindrical interface separating two conducting fluids of circular cross section in the absence of gravity using electroviscous potential flow analysis. The analysis leads to an explicit nonlinear dispersion relation in which the effects of surface tension, viscosity and electricity on the normal stress are not neglected, but the effect of shear stresses is neglected. Formulas for the growth rates and neutral stability curve are given in general. In the nonlinear theory, it is shown that the evolution of the amplitude is governed by a Ginzburg–Landau equation. When the viscosities are neglected, the cubic nonlinear Schrödinger equation is obtained. Further, it is shown that, near the marginal state, a nonlinear diffusion equation is obtained in the presence of viscosities. The various stability criteria are discussed both analytically and numerically and stability diagrams are obtained. It is also shown that, the viscosity has effect on the nonlinear stability criterion of the system, contrary to previous belief.  相似文献   

19.
热弹耦合圆板非线性振动的研究   总被引:2,自引:0,他引:2  
对温度场中圆板的非线笥热弹耦合自由振动问题,由非线性振动方程、协调方程及热传导方程出发,动用伽辽金法求解,得出一个关于时间的非线笥常策分方程组。将热弹耦合与非热弹耦合情况进行对比,发现给定初始位移较小时,热弹耦合效应使板的固有频率相对与无热弹耦合情形提高;给定初始位移较大时,热弹耦合2使固有频率降低,该文不还比较了不同热弹参数和边界条件对热弹耦合效应的影响。  相似文献   

20.
IntroductionTheplatesandtheshellswithvariablethicknessarewidelyusedinengineering .Theproblemaboutstaticshasbeenstudiedbymanyscholars;therearemanyRefs .[1 -4 ]inthisfield .Papersaboutnonlineardynamicsaremuchless[5 ,6 ].Inthispaper,selectingthemaximumamplitudeinthecenterofshallowconicalshellswithvariablethicknessasperturbationparameter,thenonlinearnaturalfrequencyofshallowconicalshellswithvariablethicknessisobtainedbymethodgiveninRef.[7] .Thenonlinearnaturalfrequencyisnotonlyconnectedwiththeva…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号