首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
垂直参数激励表面波研究进展   总被引:4,自引:1,他引:3  
受外激励的充液刚性容器中流体的波动问题有实际的工程应用背景.竖直方向的受周期性外激励的充液容器的自由表面波问题--Faraday波问题是流体力学三大不稳定性难题之一(另外两个不稳定性问题是Rayleigh-B\'enard对流和Taylor-Couette流).本文综述了在理想流体中和弱粘性流体中Faraday波的研究成果;介绍了作者在底部垂直激励的圆柱形容器中流体表面波图谱的实验研究和理论分析的结果.最后提出有待进一步研究的问题.图13,参74   相似文献   

2.
垂直激励圆柱形容器中的表面波特性研究   总被引:1,自引:0,他引:1  
利用奇异摄动理论的两时间变量展开法,研究了垂直强迫激励圆柱形容器中的单一水表面驻波模式。假设流体是无粘、不可压且运动是无旋的,在忽略了表面张力的影响下,得到一个具有立方项以及底部驱动项影响的非线性振幅方程。对上述方程进行了数值计算,并研究了特定(3,4)模式的表面驻波结构和特性,如驻波的节点分布及随某些参数的变化规律等,从计算的等高线的图象来看,和以往的实验结果相当吻合。  相似文献   

3.
Singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single interface standing wave in a two-layer liquid-filled circular cylindrical vessel, which is subjected to a vertical periodical oscillation. It is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear amplitude equation including cubic nonlinear and vertically forced terms, was derived by the method of expansion of two-time scales without taking the influence of surface tension into account. By numerical computation, it is shown that different patterns of interface standing wave can be excited for different driving frequency and amplitude. We found that the interface wave mode become more and more complex as increasing of upper to lower layer density ratio γγ. The traits of the standing interface wave were proved theoretically. In addition, the dispersion relation and nonlinear amplitude equation obtained in this article can reduce to the known results for a single fluid when γ=0,h2h1γ=0,h2h1.  相似文献   

4.
Singular perturbation theory of two-time scale expansions was developed both in inviscid and weak viscous fluids to investigate the motion of single surface standing wave in a liquid-filled circular cylindrical vessel, which is subject to a vertical periodical oscillation. Firstly, it is assumed that the fluid in the circular cylindrical vessel is inviscid, incompressible and the motion is irrotational, a nonlinear evolution equation of slowly varying complex amplitude, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from solvability condition of high-order approximation. It shows that when forced frequency is low, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is high, the influence of surface tension is significant, and can not be neglected. This proved that the surface tension has the function, which causes free surface returning to equilibrium location. Theoretical results much close to experimental results when the surface tension is considered. In fact, the damping will appear in actual physical system due to dissipation of viscosity of fluid. Based upon weakly viscous fluids assumption, the fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates damping term and external excitation, was derived from linearized Navier–Stokes equation. The analytical expression of damping coefficient was determined and the relation between damping and other related parameters (such as viscosity, forced amplitude and depth of fluid) was presented. The nonlinear amplitude equation and a dispersion, which had been derived from the inviscid fluid approximation, were modified by adding linear damping. It was found that the modified results much reasonably close to experimental results. Moreover, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent. Finally, instability of the surface wave is analyzed and properties of the solutions of the modified amplitude equation are determined together with phase-plane trajectories. A necessary condition of forming stable surface wave is obtained and unstable regions are illustrated.  相似文献   

5.
It is shown that in the two-dimensional Faraday surface waves excited in a vertically oscillating rectangular water-filled vessel there is a system of secondary circulatory flows that occupies the entire fluid volume between the vessel bottom and the free surface. In parallel with the oscillations at the wave frequency, the fluid particles are slowly displaced in accordance with these circulatory flows. The secondary flow velocity field is measured and the trajectories of individual fluid particles in the standing wave are determined. The experimental data are compared with the Longuet-Higgins model. It is shown that the initial stage of formation of regular structures on the surface of a sediment layer on the vessel bottom may be related with the presence of secondary circulatory flows.  相似文献   

6.
The effect of vertical damper plates mounted at the center of a rectangular vessel normal or at an angle to a wave flow is experimentally investigated for the first mode of the standing surface waves excited at the parametric resonance. The variation of the resonance curves and the wave attenuation degree are discussed. The fluid depth effect on the wave motion damping is evaluated.  相似文献   

7.
Experimental investigation of Faraday waves of maximum height   总被引:1,自引:0,他引:1  
The profiles of standing gravity waves of maximum height, parametrically excited on the free surface of a deep fluid in a vertically oscillating rectangular vessel (Faraday waves), are investigated experimentally. For a small modulation index of the excitation parameter, waves of three types are distinguished: regular, temporally periodic and symmetric about the vertical line passing through their crest; irregular but retaining the connectivity of the liquid volume; and breaking waves with drops separating from the free surface of the fluid. It is established that the profile of the maximum-height regular waves is smooth with a steepness of 0.255 and a limiting angle at the crest of less than 80°. Certain realizations of irregular and breaking waves, with profiles similar to those of regular waves but with much smaller steepnesses, 0288 and 0.429, respectively, are detected.  相似文献   

8.
We show that a standing wave excited in an elastic circular ring behaves like a material body: if the moment of external forces directed along the symmetry axis of the ring is applied to the ring, then not only the ring itself but also the initially standing wave excited in it will come to the accelerated rotation. In this motion, this “standing wave” does not change its shape and performs accelerated precession relative to the ring. In this case, the acceleration of the wave with respect to the ring constitutes a certain fraction of the acceleration of the ring relative to the inertial space. The moment of momentum of precessing and traveling waves is calculated.  相似文献   

9.
In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single free surface standing wave including the effect of surface tension. A nonlinear slowly varying amplitude equation, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from potential flow equation. The results show that, when forced frequency is lower, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is higher, the surface tension can not be neglected. This proved that the surface tension causes free surface returning to equilibrium location. In addition, due to considering the effect of surface tension, the theoretical result approaches to experimental results much more than that of no surface tension.  相似文献   

10.
This paper analyses the effects of a low frequency A.C. magnetic field on the free surface of a liquid metal. The action of the vertical and uniform magnetic field is twofold. First it creates forced standing surface waves which generally exhibit symmetry related to that of the container; second it triggers non-symmetric free surface instabilities superimposed on the forced regime. A previous paper considered the case of a circular cylindrical tank where axisymmetric forced standing waves caused an electric current perturbation which then excited non-axisymmetric waves at a critical A.C. field intensity. Nonlinear interaction between the symmetric and non-symmetric modes was not taken into account. The present work treats the problem from a more general standpoint. Equilibrium perturbations are developed systematically to order N2 (where N is the magnetic interaction parameter) and at this level of approximation we also need to consider nonlinear mode interactions and electromagnetic damping. The theory applies to tanks of arbitrary shape and the O(N) irrotational motion may be described by the torsion function for the particular pool cross-section. For circular and annular tanks we then derive a system of coupled Mathieu–Hill equations for the time-development of non-symmetric surface modes. Two main types of parametric resonance are predicted, namely the single or combination mode, and the particular type observed may depend on the geometry of the tank. Results of the stability analysis are confirmed by experimental work carried out in mercury pools.  相似文献   

11.
Diffraction of nonlinear waves by single or multiple in-line vertical cylinders in shallow water is studied by use of different nonlinear, shallow-water wave theories. The fixed, in-line, vertical circular cylinders extend from the free surface to the seafloor and are located in a row parallel to the incident wave direction. The wave–structure interaction problem is studied by use of the nonlinear generalized Boussinesq equations, the Green–Naghdi shallow-water wave equations, and the linearized version of the shallow-water wave equations. The wave-induced force and moment of the Green–Naghdi and the Boussinesq equations are presented when the incoming waves are cnoidal, and the forces are compared with the experimental data when available. Results of the linearized equations are compared with the nonlinear results. It is observed that nonlinearity is very important in the calculation of the wave loads on circular cylinders in shallow water. The variation of wave loads with wave height, wavelength and the spacing between cylinders is studied. Effect of the neighboring cylinders, and the shielding effect of upwave cylinders on the wave-induced loads on downwave cylinders are discussed.  相似文献   

12.
The propagation of waves in a homogeneous isotropic micropolar elastic cylindrical plate subjected to stress free conditions is investigated. The secular equations for symmetric and skew symmetric wave mode propagation are derived. At short wave limit, the secular equations for symmetric and skew symmetric waves in a stress free circular plate reduces to Rayleigh surface wave frequency equation. Thin plate results are also obtained. The amplitudes of displacements and microrotation components are obtained and depicted graphically. Some special cases are also deduced from the present investigations. The secular equations for symmetric and skew symmetric modes are also presented graphically.  相似文献   

13.
The problem of the nonlinear wave deformation of the free surface of a liquid due to the translational motions of the containing vessel is examined. Bogolyubov's averaging method is used to investigate the characteristics of the wave motions of the liquid in the resonance zones in the case of a cylindrical vessel. Relations are obtained characterizing the variation of the amplitude of the circular wave with the frequencies of the external perturbations in the steady-state wave process; the conditions of occurrence and stability of such processes are analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 120–125, May–June, 1989.  相似文献   

14.
In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions is developed in weakly viscous fluids to investigate the motion of single free surface standing wave by linearizing the Navier-Stokes equation. The fluid field is divided into an outer potential flow region and an inner boundary layer region. The solutions of both two regions are obtained and a linear amplitude equation incorporating damping term and external excitation is derived. The condition to appear stable surface wave is obtained and the critical curve is determined. In addition, an analytical expression of damping coefficient is determined. Finally, the dispersion relation, which has been derived from the inviscid fluid approximation, is modified by adding linear damping. It is found that the modified results are reasonably closer to experimental results than former theory. Result shows that when forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when forcing frequency is high, the surface tension of the fluid is prominent.  相似文献   

15.
When a liquid is perturbed, its free surface may experience highly non‐linear motions in response. This paper presents a numerical model of the three‐dimensional hydrodynamics of an inviscid liquid with a free surface. The mathematical model is based on potential theory in cylindrical co‐ordinates with a σ‐transformation applied between the bed and free surface in the vertical direction. Chebyshev spectral elements discretize space in the vertical and radial directions; Fourier spectral elements are used in the angular direction. Higher derivatives are approximated using a collocation (or pseudo‐spectral) matrix method. The numerical scheme is validated for non‐linear transient sloshing waves in a cylindrical tank containing a circular surface‐piercing cylinder at its centre. Excellent agreement is obtained with Ma and Wu's [Second order transient waves around a vertical cylinder in a tank. Journal of Hydrodynamics 1995; Ser. B4 : 72–81] second‐order potential theory. Further evidence for the capability of the scheme to predict complicated three‐dimensional, and highly non‐linear, free surface motions is given by the evolution of an impulse wave in a cylindrical tank and in an open domain. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Donnell equations are used to simulate free nonlinear oscillations of cylindrical shells with imperfections. The expansion, which consists of two conjugate modes and axisymmetric one, is used to analyze shell oscillations. Amplitudes of the axisymmetric motions are assumed significantly smaller, than the conjugate modes amplitudes. Nonlinear normal vibrations mode, which is determined by shell imperfections, is analyzed. The stability and bifurcations of this mode are studied by the multiple scales method. It is discovered that stable quasiperiodic motions appear at the bifurcations points. The forced oscillations of circular cylindrical shells in the case of two internal resonances and the principle resonance are analyzed too. The multiple scales method is used to obtain the system of six modulation equations. The method for stability analysis of standing waves is suggested. The continuation algorithm is used to analyze fixed points of the system of the modulation equations.  相似文献   

17.
Scattering of pulsed Rayleigh surface waves by a cylindrical cavity   总被引:1,自引:0,他引:1  
A pulsed Rayleigh surface wave of prescribed shape is incident on a cylindrical cavity which is parallel to both the plane free surface and the plane wave front. Multiple reflections at the cylindrical and plane free surface are considered and the resulting displacements and stress components are calculated in the surrounding of the cavity by approximately summing infinite double sums. Use is made of the stationary loading case simulated by a periodic train of wave pulses and its time Fourier series representation and of expansions of all incident and reflected waves in terms of cylindrical wave functions. For reflection, the free surface of the half-space is approximated by a fictitious convex (or concave) cylindrical surface of “large” radius. The wave pattern due to a single pulse loading is constructed from the stationary solution by enforcing homogeneous initial conditions in the half-space ahead of the single loading pulse and by prescribing a wide spacing in the periodically set-forth train of pulses. The numerical results for stresses and dynamic stress magnification factors are especially useful for the interpretation of recent measurements in dynamic photoelasticity.  相似文献   

18.
Irregular and breaking Faraday waves are experimentally investigated. Among the irregular waves those with a small depression in the wave crest and periodic triplets are distinguished. In the case of breaking waves the mechanism of jet launch formation on the wave crest is considered. It is experimentally demonstrated that the breaking of standing waves in a rectangular reservoir starts with cavity collapse on the wave crest in process of formation. It is shown that jet launch from the wave crest is preceded by the initiation, development, and collapse of a cavity. A universal power-law dependence governing cavity collapse is obtained. A comparison of the experimental data with an analytical model suggests that cavity initiation is due to the nonlinearity of the waves themselves, namely, the presence of two small disturbances of the free surface traveling counter to one another and forming a cavity. The results obtained underline the importance of the initial stage of wave breaking.  相似文献   

19.
在理论上和实验上对环形薄板二维驻波波节图形(克拉尼图形) 进行了研究. 通过在极坐标下对垂直板面方向小振动方程进行分离变量, 求解出环形薄板小振动方程在外边界悬空时分别在两种内边界条件, 即内边界悬空和内边界简支下的解析解的简正模式, 并计算了在第一种边条件下几种共振模式的径向波速近似值, 以及两种边条件下的圆形驻波波节线的半径和薄板的弹性模量. 发现通过调节环形薄板上点振动源的频率, 可精确控制薄板上出现的克拉尼图形. 实验上观察到了仅有圆形波节线, 仅有辐射状波节线, 以及两种波节线同时存在3 种简正模式的情形, 且波节线的数量可严格控制. 理论结果跟实验符合得很好.   相似文献   

20.
An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized curvilinear governing equations are solved by a fractional step method on a rectangular transformed domain. Of importance is to employ a higher order (either quadratic or cubic spline function) integral method for the top‐layer non‐hydrostatic pressure under a staggered grid framework. Model accuracy and efficiency, in terms of required vertical layers, are critically examined on a linear progressive wave case. The model is then applied to simulate waves propagating in a canal with variable widths, cnoidal wave runup around a circular cylinder, and three‐dimensional wave transformation in a circular channel. Overall the results show that the curvilinear non‐hydrostatic model using a few, e.g. 2–4, vertical layers is capable of simulating wave dispersion, diffraction, and reflection due to curved sidewalls. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号