首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper,a weighted residual method for the elastic-plastic analysis near a crack tip is systematically given by taking the model of power-law hardening under plane strain condition as a sample.The elastic-plastic solutions of the crack tip field and an approach based on the superposition of the nonlinear finite element method on the complete solution in the whole crack body field,to calculate the plastic stress intensity factors,are also developed.Therefore,a complete analysis based on the calculation both for the crack tip field and for the whole crack body field is provided.  相似文献   

2.
In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gratings on the surfaces of constantan wires and the random phase shifting technique is used to process moir′e fringes. The virtual strain method is briefly introduced and used to calculate the real strain of specimens. In order to study the influence of a defect on the electrical failure of the constantan wire, experiments were conducted on two specimens, one with a crack, while the other one without any crack. By comparing the results, we found that the defect makes the critical beam current of electrical failure decrease. In addition, the specimens were subjected to compression after electrical failure, in agreement with the observed crack closure of the specimen. The successful results demonstrate that the moir′e method is effective to characterize the full-field deformation of constantan wires on the polymer membrane, and has a good potential for further application to the deformation measurement of thin films.  相似文献   

3.
《力学快报》2019,9(6):339-352
To overcome the difficulties of re-meshing and tracking the crack-tip in other computational methods for crack propagation simulations, the phase field method based on the minimum energy principle is introduced by defining a continuous phase field variable(x)∈[0,1] to characterize discontinuous cracks in brittle materials. This method can well describe the crack initiation and propagation without assuming the shape, size and orientation of the initial crack in advance. In this paper, a phase field method based on Miehe's approach [Miehe et al., Comp. Meth. App.Mech. Eng.(2010)] is applied to simulate different crack propagation problems in twodimensional(2 D), isotropic and linear elastic materials. The numerical implementation of the phase field method is realized within the framework of the finite element method(FEM). The validity, accuracy and efficiency of the present method are verified by comparing the numerical results with other reference results in literature. Several numerical examples are presented to show the effects of the loading type(tension and shear), boundary conditions, and initial crack location and orientation on the crack propagation path and force-displacement curve. Furthermore, for a single edge-cracked bi-material specimen, the influences of the loading type and the crack location on the crack propagation trajectory and force-displacement curve are also investigated and discussed. It is demonstrated that the phase field method is an efficient tool for the numerical simulation of the crack propagation problems in brittle elastic materials, and the corresponding results may have an important relevance for predicting and preventing possible crack propagations in engineering applications.  相似文献   

4.
MESHLESS METHOD FOR 2D MIXED-MODE CRACK PROPAGATION BASED ON VORONOI CELL   总被引:1,自引:0,他引:1  
A meshless method integrated with linear elastic fracture mechanics (LEFM) is presented for 2D mixed-mode crack propagation analysis. The domain is divided automatically into sub-domains based on Voronoi cells, which are used for quadrature for the potential energy. The continuous crack propagation is simulated with an incremental crack-extension method which assumes a piecewise linear discretization of the unknown crack path. For each increment of the crack extension, the meshless method is applied to carry out a stress analysis of the cracked structure. The J-integral, which can be decomposed into mode I and mode II for mixed-mode crack, is used for the evaluation of the stress intensity factors (SIFs). The crack-propagation direction, predicted on an incremental basis, is computed by a criterion defined in terms of the SIFs. The flowchart of the proposed procedure is presented and two numerical problems are analyzed with this method. The meshless results agree well with the experimental ones, which validates the accuracy and efficiency of the method.  相似文献   

5.
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic–viscoplastic constitutive relation with various hardening–softening–hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip.On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening(or softening–hardening) has a particularly strong effect on the near crack tip stress and deformation fields.  相似文献   

6.
FRACTURE ANALYSIS OF A FUNCTIONALLY GRADED STRIP UNDER PLANE DEFORMATION   总被引:4,自引:0,他引:4  
In this paper the plane elasticity problem for a functionally graded strip containing a crack is considered. It is assumed that the reciprocal of the shear modulus is a linear function of the thickness-coordinate, while the Possion's ratio keeps constant. By utilizing the Fourier transformation technique and the transfer matrix method, the mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. The influences of the geometric parameters and the graded parameter on the stress intensity factors and the strain energy release rate are investigated. The numerical results show that the graded parameters, the thickness of the strip and the crack size have significant effects on the stress intensity factors and the strain energy release rate.  相似文献   

7.
The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one shearing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials.  相似文献   

8.
Void closing from a spherical shape to a crack is investigated quantitatively in the present study. The constitutive relation of the Void-free matrix is assumed to obey the Norton power law. A representative volume element (RVE) which includes matrix and void is employed and a Rayleigh-Ritz procedure is developed to study the deformation-rates of a spherical void and a penny-shaped crack. Based on an approximate interpolation scheme, an analytical model for void closure in nonlinear plastic materials is established. It is found that the local plastic flows of the matrix material are the main mechanism of void deformation. It is also shown that the relative void volume during the deformation depends on the Norton exponent, on the far-field stress triaxiality, as well as on the far-field effective strain. The predictions of void closure using the present model are compared with the corresponding results in the literature, showing good agreement. The model for void closure provides a novel way for process design and optimization in terms of elimination of voids in billets because the model for void closure can easily be applied in the CAE analysis.  相似文献   

9.
In this paper, we demonstrate a new optical method for tiny strain measurements based on the principle of carrier fringes of moire interferometry. A cross-line grating with frequency of 1200 lp/mm is replicated on the specimen surface, and the strain can be deduced from the changes in carrier fringes before and after the deformation of an object. Four coherent laser beams are used to obtain the carrier fringe patterns of field U and V. Both theoretical analysis and numerical simulation indicate that the ideal accuracy of strain can be controlled within a range of ±1με. Case study of a plane extension experiment shows that the measurement accuracy of strain can be controlled within the range of ±10με. The average strain values of every row of field U and every column of field V can be obtained by using this method, and approximated strain of every pixel in the whole-field can be further acquired, and thus it is possible to measure tiny strains occurred in a micro-field. The technology in this paper can provide comprehensive information for analyzing related mechanical content in the field of MEMS.  相似文献   

10.
The nonlinear fracture behavior of quasi-brittle materials is closely related with the cohesive force distribution of fracture process zone at crack tip. Based on fracture character of quasi-brittle materials, a mechanical analysis model of half infinite crack with cohesive stress is presented. A pair of integral equations is established according to the superposition principle of crack opening displacement in solids, and the fictitious adhesive stress is unknown function . The properties of integral equations are analyzed, and the series function expression of cohesive stress is certified. By means of the data of actual crack opening displacement, two approaches to gain the cohesive stress distribution are proposed through resolving algebra equation. They are the integral transformation method for continuous displacement of actual crack opening, and the least square method for the discrete data of crack opening displacement. The calculation examples of two approaches and associated discussions are give  相似文献   

11.
Based on the mechanics of anisotropic materials, the dynamic propagation problem of a mode Ⅲ crack in an infinite anisotropic body is investigated. Stress, strain and displacement around the crack tip are expressed as an analytical complex function, which can be represented in power series. Constant coefficients of series are determined by boundary conditions. Expressions of dynamic stress intensity factors for a mode Ⅲ crack are obtained. Components of dynamic stress, dynamic strain and dynamic displacement around the crack tip are derived. Crack propagation characteristics are represented by the mechanical properties of the anisotropic materials, i.e., crack propagation velocity M and the parameter ~. The faster the crack velocity is, the greater the maximums of stress components and dynamic displacement components around the crack tip are. In particular, the parameter α affects stress and dynamic displacement around the crack tip.  相似文献   

12.
The seepage evolution characteristic of brittle rock materials is very significant for the stability and safety of rock engineering. In this research, a series of conventional triaxial compression and gas seepage tests were carried out on sandstone specimens with a rock mechanics servo-controlled testing system. Based on the experimental results, the relationship between permeability and deformation is firstly analyzed in detail. The results show that the permeability–axial strain curve can be divided into the following five phases: the phase of micro-defects closure, the phase of linear elastic deformation, the phase of nonlinear deformation, the phase of post-peak stress softening and the phase of residual strength. The seepage evolution characteristic is also closely correlated with the volumetric deformation according to the relationship between permeability and volumetric strain. It is found that the gas seepage pressure has a great effect on the permeability evolution, i.e. permeability coefficients increase with increasing gas seepage pressures. Finally, the influence of gas seepage pressures on the failure behavior of brittle sandstone specimens is discussed.  相似文献   

13.
Residual stress measurement is of critical significance to in-service security and the reliability of engineering components, and has been an active area of scientific interest. This paper offers a review o[ several prominent mechanical release methods for residual stress measurement and recent developments, focusing on the hole-drilling method combined with advanced optical sensing. Some promising trends for mechanical release methods are also analyzed.  相似文献   

14.
In this paper a new approach for designing upwind type schemes-the characterizing-integral method and its applied skills are introduced, The method is simple, convenient and eff ective. And the method isn't only limited to conservation laws unlike other methods and may be easily extended to multi-dimension problems. Furthermore, the numerical dissipation of the method can be flexibly regulated, so that it is especially suitable for solving various discontinuity problems. The paper shows us how to use this approach to simulate deformation and breaking of a nonlinear shallow water wave on a gentle slope, and to compute two-dimensional dam failure problem.  相似文献   

15.
An experimental investigation on the mechanical mechanisms of fatigue micro-crack initiation and propagation of a nickel-based superalloy is presented. By coupling digital image correlation method and scanning electron microscope, the fatigue residual strain distribution at the grain scale has been obtained. The results showed that there is a trend of accumulation for the residual strain. Micro-cracks are more likely to initiate in or near the areas with particularly large residual strain, and propagate along the large-strain paths.  相似文献   

16.
The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized hi-harmonic equations, the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions, a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about bimaterial engineering parameters. According to the uniqueness theorem of limit, both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same, the stress singularity exponents, stress intensity factors and stresses for mode II crack of the orthotropic single material are obtained.  相似文献   

17.
In this paper a new approach for designing upwind type schemes-the characterizing-integral method and its applied skills are introduced. The method is simple, convenient and eff ective. And the method isn ’t only limited to conservation laws unlike other methods and maybe easily extended to multi-dimension problems. Furthermore, the numerical dissipation of the method can be flexibly regulated, so that it is especially suitable for solving various discontinuity problems.The paper shows us now to use this approach to simulate deformation and breaking of a nonlinear shallow water wave on a gentle slope, and to compute two-dimensional dam failure problem.  相似文献   

18.
Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.  相似文献   

19.
In this paper, the stress singularity analysis at the crack tip on elastic bi-material inter-faces is considered. The governing equations of plane elasticity in sectorial domain are derived to be inHamiltonian form via variable substitution and variational principle. The methods of separation ofvariables and conjugate symplectic eigen-function expansion are developed to solve the equations insectorial domain. The general formulae for the solution of stress singularities at the crack tip on bi-ma-terial interfaces are put forward, and a new solution technique for fracture problems is presented.  相似文献   

20.
Polymeric materials usually present some viscoelastic behavior. To improve the mechanical behavior of these materials, ceramics materials are often filled into the polymeric materials in form of fiber or particle. A micromechanical model was proposed to estimate the overall viscoelastic behavior for particulate polymer composites, especially for high volume concentration of filled particles. The method is based on Laplace transform technique and an elastic model including two-particle interaction. The effective creep compliance and the stress and strain relation at a constant loading rate are analyzed. The results show that the proposed method predicts a significant stiffer response than those based on Mori-Tanaka's method at high volume concentration of particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号