首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Symplectic approach has emerged a popular tool in dealing with elasticity problems especially for those with stress singularities. However, anisotropic material problem under polar coordinate system is still a bottleneck. This paper presents a subfield method coupled with the symplectic approach to study the anisotropic material under antiplane shear deformation. Anisotropic material around wedge tip is considered to be consisted of many subfields with constant material properties which can be handled by the symplectic approach individually. In this way, approximate solutions of the stress and displacement can be obtained. Numerical examples show that the present method is very accurate and efficient for such wedge problems. Besides, this paper has extended the application of the symplectic approach and provides a new idea for wedge problems of anisotropic material.  相似文献   

2.
In this paper a new approach for designing upwind type schemes-the characterizing-integral method and its applied skills are introduced, The method is simple, convenient and eff ective. And the method isn't only limited to conservation laws unlike other methods and may be easily extended to multi-dimension problems. Furthermore, the numerical dissipation of the method can be flexibly regulated, so that it is especially suitable for solving various discontinuity problems. The paper shows us how to use this approach to simulate deformation and breaking of a nonlinear shallow water wave on a gentle slope, and to compute two-dimensional dam failure problem.  相似文献   

3.
We are interested in the model reduction techniques for hyperbolic problems, particularly in fluids. This paper, which is a continuation of an earlier paper of Abgrall et al, proposes a dictionary approach coupled with an L1 minimization approach. We develop the method and analyze it in simplified 1‐dimensional cases. We show in this case that error bounds with the full model can be obtained provided that a suitable minimization approach is chosen. The capability of the algorithm is then shown on nonlinear scalar problems, 1‐dimensional unsteady fluid problems, and 2‐dimensional steady compressible problems. A short discussion on the cost of the method is also included in this paper.  相似文献   

4.
This paper presents a boundary element formulation and numerical implementation of the problem of small axisymmetric deformation of viscoplastic bodies. While the extension from planar to axisymmetric problems can be carried out fairly simply for the finite element method (FEM), this is far from true for the boundary element method (BEM). The primary reason for this fact is that the axisymmetric kernels in the integral equations of the BEM contain elliptic functions which cannot be integrated analytically even over boundary elements and internal cells of simple shape. Thus, special methods have to be developed for the efficient and accurate numerical integration of these singular and sensitive kernels over discrete elements. The accurate determination of stress rates by differentiation of the displacement rates presents another formidable challenge.A successful numerical implementation of the boundary element method with elementwise (called the Mixed approach) or pointwise (called the pure BEM or BEM approach) determination of stress rates has been carried out. A computer program has been developed for the solution of general axisymmetric viscoplasticity problems. Comparisons of numerical results from the BEM and FEM, for several illustrative problems, are presented and discussed in the paper. It is possible to get direct solutions for the simpler class of problems for cylinders of uniform cross-section, and these solutions are also compared with the BEM and FEM results for such cases.  相似文献   

5.
The perturbation method is one of the effective methods for so-lving problems in nonlinear continuum mechanics.It has been de-veloped on the basis of the linear analytical solutions for the o-riginal problems.If a simple analytical solution cannot be ob-tained.we would encounter difficulties in applying this method tosolving certain complicated nonlinear problems.The finite ele-ment method appears to be in its turn a very useful means for sol-ving nonlinear problems,but generally it takes too much time incomputation.In the present paper a mixed approach,namely,theperturbation finite element method,is introduced,which incorpo-rates the advantages of the two above-mentioned methods and enablesus to solve more complicated nonlinear problems with great savingin computing time.Problems in the elastoplastic region have been discussed anda numerical solution for a plate with a central hole under tensionis given in this paper.  相似文献   

6.
This paper presents a dedicated approach to the calculation of the random response of assemblies with uncertain interface characteristics. The random response is constructed using a polynomial chaos expansion (PCE). A decomposition of the assemblies into substructures and interfaces is defined and associated with a dedicated computational strategy which leads to a local/global algorithm enabling the treatments of the substructure and of the interface problems to be uncoupled. Since the only uncertain parameters are those which appear in the interface equations, this approach results in a drastic reduction of the computational costs. This paper first presents the classical stochastic finite element strategy for this kind of problem, then details the proposed dedicated approach. The applications concern structures assembled with uncertain elastic bonded joints. The proposed approach is compared to the Monte Carlo method and to the stochastic finite element method.  相似文献   

7.
In this paper, we present a new Galerkin finite element method with bubble function for the compressible Euler equations. This method is derived from the scaled bubble element for the advection-diffusion problems developed by Simo and his colleagues, which is based on the equivalence between the Galerkin method employing piecewise linear interpolation with bubble functions and the Streamline-Upwind/Petrov Galerkin (SUPG) finite element method using P1 approximation in the steady advection-diffusion problem. Simo and this author have applied this approach to transient advection-diffusion problems by using a special scaled bubble function called P-scaled bubble, which is designed to work in the transient advection-diffusion problems for any Peclet number from 0 to ∞. The method presented in this paper is an application of this p-scaled bubble element to a pure hyperbolic system.  相似文献   

8.
计算不确定结构系统静态响应的一种可靠方法   总被引:18,自引:1,他引:18  
不确定性广泛存在于工程结构分析和设计过程之中,不能简单地予以忽略。目前,概率方法、模糊方法和区间方法是不确定性建模的三种主要方法。本文把具有不确定性的结构材料参数、几何参数和所受外力用区间数描述,通过求解线性区间方程组准确地计算了结构静态响应。计算结果易于扩张是区间计算的一个主要缺陷,本文提出了一种有效避免这一问题的方法。该方法把区间函数的计算和区间线性方程组的求解转化为相应的全局优化问题,来确定解中的每个区间元素的边界值,并采用一种智能性算法(实数编码遗传算法)来求解这些全局优化问题。本文首先采用数学和结构分析算例对该方法的正确性和有效性进行了验证,然后把该方法与有限元方法相结合计算不确定结构系统的响应范围,并和求解同类问题的方法进行了比较。  相似文献   

9.
The paper proposes a method of incremental loading for solving nonlinear problems of shell theory. A feature of this method is that the same algorithm is used before buckling, at the limit point, and after buckling. The method is based on the assumption that all the unknowns, including the load parameter, are on an equal footing. It is shown that the method can be used to solve algebraic equations with Cramer's rule involved to avoid numerical instability in the neighborhood of the limit point. Test problems confirm the validity of the approach Translated from Prikladnaya Mekhanika, Vol. 44, No. 9, pp. 85–93, September 2008.  相似文献   

10.
In the present paper a numerical algorithm is given for solving a standard problem in fluid dynamics, that of inviscid, irrotational, incompressible flow over an arbitrary symmetric profile. The purpose of the paper is to propose an alternative approach to solve certain fluid dynamic flows. This paper may be thought of as the first of a possible series of papers solving new and fundamental problems. In a sense, this new approach asks the question: what is the simplest and most efficient method of solving the problem considered by finite difference methods. It is believed that the following algorithm answers this question. Standard second-order finite difference techniques, such as SLOR and ADI, are used to solve numerically a mixed boundary value problem comprised of a pair of elliptic partial differential equations with constant coefficients.  相似文献   

11.
刘硕  方国东  王兵  付茂青  梁军 《力学学报》2018,50(2):339-348
求解含裂纹等不连续问题一直是计算力学的重点研究课题之一,以偏微分方程为基础的连续介质力学方法处理不连续问题时面临很大的困难. 近场动力学方法是一种基于积分方程的非局部理论,在处理不连续问题时有很大的优越性. 本文提出了求解含裂纹热传导问题的一种新的近场动力学与有限元法的耦合方法. 结合近场动力学方法处理不连续问题的优势以及有限元方法计算效率高的优势,将求解区域划分为两个区域,近场动力学区域和有限元区域. 包含裂纹的区域采用近场动力学方法建模,其他区域采用有限元方法建模. 本文提出的耦合方案实施简单方便,近场动力学区域与有限元区域之间不需要设置重叠区域. 耦合方法通过近场动力学粒子与其域内所有粒子(包括近场动力学粒子和有限元节点)以非局部方式连接,有限元节点与其周围的所有粒子以有限元方式相互作用. 将有限元热传导矩阵和近场动力学粒子相互作用矩阵写入同一整体热传导矩阵中,并采用Guyan缩聚法进一步减小计算量. 分别采用连续介质力学方法和近场动力学方法对一维以及二维温度场算例进行模拟,结果表明,本文的耦合方法具有较高的计算精度和计算效率. 该耦合方案可以进一步拓展到热力耦合条件下含裂纹材料和结构的裂纹扩展问题.   相似文献   

12.
In this paper we present a discrete adjoint approach for the optimization of unsteady, turbulent flows. While discrete adjoint methods usually rely on the use of the reverse mode of Automatic Differentiation (AD), which is difficult to apply to complex unsteady problems, our approach is based on the discrete adjoint equation directly and can be implemented efficiently with the use of a sparse forward mode of AD. We demonstrate the approach on the basis of a parallel, multigrid flow solver that incorporates various turbulence models. Due to grid deformation routines also shape optimization problems can be handled. We consider the relevant aspects, in particular the efficient generation of the discrete adjoint equation and the parallel implementation of a multigrid method for the adjoint, which is derived from the multigrid scheme of the flow solver. Numerical results show the efficiency of the approach for a shape optimization problem involving a three dimensional Large Eddy Simulation (LES).  相似文献   

13.
In this paper, we propose for the first time to extend the application field of the high-order mesh-free approach to the stationary incompressible Navier-Stokes equations. This approach is based on a high-order algorithm, which combines a Taylor series expansion, a continuation technique, and a moving least squares (MLS) method. The Taylor series expansion permits to transform the nonlinear problem into a succession of continuous linear ones with the same tangent operator. The MLS method is used to transform the succession of continuous linear problems into discrete ones. The continuation technique allows to compute step-by-step the whole solution of the discrete problems. This mesh-free approach is tested on three examples: a flow around a cylindrical obstacle, a flow in a sudden expansion, and the standard benchmark lid-driven cavity flow. A comparison of the obtained results with those computed by the Newton-Raphson method with MLS, the high-order continuation with finite element method, and those of literature is presented.  相似文献   

14.
数值流形方法(NMM)因其特有的双覆盖系统(数学覆盖和物理覆盖)在域离散方面具有独特的优势,而精细时间积分法则具有精度高、无条件稳定、无振荡以及计算结果不依赖于时间步长等特点。发展了用于研究二维瞬态热传导问题的精细积分NMM。结合待求问题的控制方程和边界条件,并基于修正变分原理导出了NMM的总体方程,给出了求解此类时间相依方程的精细时间积分及空间积分策略,选取了两个典型算例对方法的有效性进行了验证,结果表明本文方法可以高效高精度地求解瞬态热传导问题。  相似文献   

15.
In order to overcome the difficulties caused by singular optima, in the present paper, a new method for the solutions of structural topology optimization problems is proposed. The distinctive feature of this method is that instead of solving the original optimization problem directly, we turn to seeking the solutions of a sequence of approximated problems which are formulated by relaxing the constraints of the original problem to some extent. The approximated problem can be solved efficiently by employing the algorithms developed for sizing optimization problems because its solution is not singular. It can also be proved that when the relaxation parameter is tending to zero, the solution of the approximated problem will converge to the solution of the original problem uniformly. Numerical examples illustrate the effectiveness and validity of the present approach. Results are also compared with those obtained by traditional methods. The project supported by the National Natural Science Foundation of China under project No. 19572023  相似文献   

16.
The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.  相似文献   

17.
Recently there has been a growing interest in methods that decompose complex optimization problems and employ a multilevel or hierarchical approach. One of the most irksome problems with the hierarchical approach is the discontinuous behavior of derivatives that are transferred from the lower levels of the hierarchy to the upper levels. This paper proposes a hierarchical algorithm that is free of such difficulties. A penalty function method is employed, in combination with Newton's method with approximate second derivatives, to perform the optimization. The penalty function formulation is shown to be natural for multilevel problems. A simple three-bar truss and a simple frame problem are used for demonstration  相似文献   

18.
随机剪切柱在地震激励下的演变随机响应   总被引:3,自引:0,他引:3  
随机剪切柱是指固连于地面的剪切柱的某些物理参数是随机变量 ,该模型在Niigata地震激励下的响应属于演变随机响应。本文将新近发展起来的演变随机响应问题的统一解法 ,推广到用于求解随机结构振动响应问题。首先用这一方法求出每个样本结构的随机响应 ,然后用MonteCarlo法来进一步求随机结构的集合随机响应特性。这样 ,与单纯用Monte Carlo法进行数字模拟相比 ,可使计算工作量大为减少。本文用随机剪切柱的演变随机响应问题加以说明  相似文献   

19.
一种计算复合材料等效弹性性能的有限元方法   总被引:3,自引:0,他引:3  
在最小二乘意义下提出了一种计算复合材料等效弹性性能的有限元方法.这种方法由于考虑了等效弹性张量各分量之间的耦合关系,所求得的等效弹性常数比传统方法更可靠,可适用于求解含任意形状的夹杂和夹杂物问题.通过算例计算了在不同弹性模量对比度下两相复合材料的等效弹性性能,并与相关的理论及数值结果进行了比较,结果表明,利用该方法计算含夹杂复合材料等效弹性常数是可行的.  相似文献   

20.
A new approximate analytical approach for accurate higher-order nonlinear solutions of oscillations with large amplitude is presented in this paper. The oscillatory system is subjected to a non-rational restoring force. This approach is built upon linearization of the governing dynamic equation associated with the method of harmonic balance. Unlike the classical harmonic balance method, simple linear algebraic equations instead of nonlinear algebraic equations are obtained upon linearization prior to harmonic balancing. This approach also explores large parameter regions beyond the classical perturbation methods which in principle are confined to problems with small parameters. It has significant contribution as there exist many nonlinear problems without small parameters. Through some examples in this paper, we establish the general approximate analytical formulas for the exact period and periodic solution which are valid for small as well as large amplitudes of oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号