首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this paper, an analytical solution for the dynamic response of a half-space porous medium subjected to a moving point load is derived. In the model, the displacements of the solid skeleton and the pore pressure are expressed in terms of two scalar potentials and one vectorial potential. Based on Biot’s theory, the frequency domain Holmholtz equations for the potentials are derived through the Fourier transformation with respect to time. The general solutions for the potentials are derived through the Fourier transformation with respect to the horizontal coordinates. Numerical results suggest that moving loads have very complicated effects on the dynamic response of the porous medium. Generally speaking, a moving load with a high speed will generate a larger response in the porous medium than a static or a lower speed load.  相似文献   

2.
饱和土中的任意形状孔洞对弹性波的散射   总被引:15,自引:0,他引:15  
陆建飞  王建华 《力学学报》2002,34(6):904-913
根据Biot波动理论建立了求解饱和土中任意形状孔洞对弹性波散射问题的复变函数方法.首先通过引入位移势函数把稳态条件下的Biot波动方程解耦为势函数所满足的Helmholtz方程.利用分离变量方法即得到Helmholtz方程完备的通解.根据所得位移势函数的通解,可得骨架位移、流体相对骨架的位移、应力和孔压的表达式.通过保角变换方法,把物理平面上的孔洞映射到像平面上单位圆.利用土骨架和流体的边界条件,即可确定波函数展开式中的未知系数.给出了一些数值结果.  相似文献   

3.
In this paper, the dynamic response of an infinite cylindrical hole embedded in a porous medium and subjected to an axisymmetric ring load is investigated. Two scalar potentials and two vector potentials are introduced to decouple the governing equations of Biot’s theory. By taking a Fourier transform with respect to time and the axial coordinate, we derive general solutions for the potentials, displacements, stresses and pore pressures in the frequency-wave-number domain. Using the general solutions and a set of boundary conditions applied at the hole surface, the frequency-wave-number domain solutions for the proposed problem are determined. Numerical inversion of the Fourier transform with respect to the axial wave number yields the frequency domain solutions, while a double inverse Fourier transform with respect to frequency as well as the axial wave number generates the time-space domain solution. The numerical results of this paper indicate that the dynamic response of a porous medium surrounding an infinite hole is dependant upon many factors including the parameters of the porous media, the location of receivers, the boundary conditions along the hole surface as well as the load characteristics.  相似文献   

4.
The current theoretical study deals with computation of Stoneley waves along a solid–solid interface and Scholte waves (also called Scholte-Gogoladze) along a solid–liquid interface by reciprocity considerations. Closed-form solutions of the wave motions generated by a time-harmonic line load applied in two bonded elastic half-spaces of different material properties are derived in a simple manner. In order to perform direct applications of reciprocity theorems, we introduce in this article new expressions for the displacements of free interface waves. Reciprocity relations between an actual state, interface wave motion generated by a time-harmonic line load, and a virtual state, an appropriately chosen free wave traveling along the interface, are derived. Scattered amplitudes of Stoneley waves and Scholte waves due to the load are thus computed. To show application of the obtained results, scattering of Stoneley wave by a delamination at the interface is then studied.  相似文献   

5.
In this study, the transient response of an elastic strip subjected to dynamic in-plane loadings on the surface is investigated in detail. One of the objectives of this study is to develop an effective analytical method for determining transient solutions in a strip. By applying Laplace transform, the analytical solution in the transformed domain is derived and expressed in matrix form. The solution is then decomposed into infinite wave groups in which the multiple reflected waves with the same reflection are involved. Each multi-reflected wave can be identified by a coding method and be verified by the theory of generalized ray. The inverse transform is performed by using the well-known Cagniard method. The transient solutions in time domain for stresses and displacements are expressed in a closed form and are discussed in detail by an example. The experimental results show that the early time transient responses of displacements on the surface agree very well with the numerical calculations based on the theoretical solutions.  相似文献   

6.
A load moving on the surface of an elastic halfspace forms a basic problem that is related to different fields of engineering, such as the subsoil response due to vehicle motion or the ultrasound field due to an angle beam transducer. Many numerical techniques have been developed to solve this problem, but these do not provide the fundamental physical insights that are offered by closed form solutions, which are very rare in comparison. This paper describes the development and analysis of the closed form space-time domain solution for a knife-edge load, i.e. a line segment of normal traction, moving at a constant speed on the surface of an elastic halfspace. The various contributions making up the exact solution, obtained with the Cagniard-De Hoop method, produce all the complicated wave patterns from this distributed type of loading. Examples are the transient wave field at the starting position of the load, angled conical and plane waves propagating into the solid, Rayleigh waves propagating along the surface, and head waves spreading and attenuating in specific directions from the loading path. The influence of the load speed on the wave field is investigated by considering the singularities in the relevant complex domains, for each sonic range relative to the bulk wave velocities. The characteristic wave fronts and wave patterns as exhibited by the particle displacements are evaluated for subsonic, transonic and supersonic load speeds.  相似文献   

7.
Complete analytical solution for the normally incident water wave scattering by a porous flexible vertical elastic plate or tensioned membrane is found. The physical problem in a half-plane is reduced to a couple of equivalent quarter-plane problems by allowing incident waves from either direction of the structure. In the same way, quarter-plane boundary value problems are posed for solid wave potentials that are solutions of the scattering problem involving a rigid structure of the same geometric configuration. Then, two novel integral relations are introduced to establish a link between the required solution wave potentials and few resolvable solid wave potentials. Explicit expressions for the scattering quantities such as the reflection and the transmission coefficients are obtained. Also, the deflection of the flexible vertical structure and the solution potentials are determined analytically. Numerical results for the explicitly derived scattering quantities and structure deflections are presented.  相似文献   

8.
针对三维粘弹性层状半空间埋置集中荷载作用下动力响应问题,在柱面坐标下,结合径向Hankel积分变换,提出了一种新的求解方法—修正刚度矩阵法。方法基于位势函数理论,将三维问题分解为平面内反应(P-SV波型)和平面外反应(SH波型)两个二维问题的叠加;借鉴结构力学中超静定结构的位移法原理,首先固定荷载所在层的上下界面,通过对波动方程的特解和齐次解叠加得到“固端”反力。进而放松两“固端约束”,利用直接刚度法求得各层面位移,荷载作用层内反应另需叠加上该“固定层”内解,并将特解部分积分(直达波)由全空间解析解代替,解决了当接收点和源点作用水平面接近时的积分收敛问题。算例分析表明,对于低频(可退化为静力状态)和高频问题,本文方法均具有很高的计算效率和精度。  相似文献   

9.
A two-dimensional elasticity analysis for steady-state axisymmetric dynamic response of an arbitrarily thick elastic homogeneous hollow cylinder of infinite length, which is imperfectly bonded to the surrounding fluid-saturated permeable formation, subject to an axially moving ring load, is presented. The problem solution is derived by using Biot’s dynamic theory of poroelasticity in conjunction with double Fourier transformation with respect to time (frequency) and axial coordinate (axial wave number). The analytical results are illustrated with numerical examples in which a concrete tunnel lining of uniform wall thickness is imperfectly bonded to a surrounding water-saturated poroelastic formation of soft/stiff frame characteristic. Numerical solutions for the radial shell mid-plane and formation displacements are calculated by analytical (numerical) inversion of the Fourier transformation with respect to the frequency (axial wave number). Primary attention is focused on the influence of bonding condition at the liner/soil interface, formation material type, and load velocity on the system’s dynamic response. Limiting cases are considered and good agreements with the solutions available in the literature are obtained.  相似文献   

10.
This research addresses the investigation of an elastic wave field in a homogeneous and isotropic porous medium which is fully saturated by a Newtonian viscous fluid. A new methodology is developed for describing the wave field in the medium excited by multiple energy sources. To quantify the relative displacements between the fluid and solid of the medium, the governing equations of the elastic wave propagation are derived in the form of displacements specially. The velocities and attenuation of the waves are considered as functions of viscosity and frequency. Making use of the Hankel function and the moving-coordinate method, a model of the wave motion with multiple cylindrical wave sources is built. Making use of the model established in this research, the relative displacement between the fluid and the solid can be quantified, and the wave field in the porous media can then be determined with the given energy sources. Numerical simulations of cylindrical waves from multiple energy sources propagating in the porous medium saturated by viscous fluid are performed for demonstrating the practicability of the model developed.  相似文献   

11.
A set of governing equations in Lagrangian form is derived for propagating gravity waves in water of uniform depth. The Lindstedt–Poincaré perturbation method is used to obtain approximations up to fifth order. Recognizing the Lagrangian frequency to be a position function for all particles is a key to find these higher-order approximations. The present solution has zero pressure at the free surface and satisfies exactly the dynamic boundary condition. Under the present approximations, the Lagrangian frequency is composed of two parts. The first part is constant for all particles and equivalent to the term in the fifth-order Stokes' wave theory [J.D. Fenton, A fifth-order Stokes theory for steady waves, J. Waterway, Port, Coastal Ocean Eng. 111 (1985) 216–234]. The second part is a function of the depth. All the particles move as open (nonclosed) loops and have mean drift displacements that decrease exponentially with the water depth. Thus, a new fourth-order mass transport velocity is found.  相似文献   

12.
秦梦飞  施伟  柴威  付兴  李昕 《力学学报》2022,54(4):881-891
风机大型化是我国海上风电技术发展的重要方向. 东南沿海是我国海上风电发展的重要基地, 这一区域频繁发生的台风对海上风机的影响不可忽略. 台风风场与常规大风风场有不同的湍流特性, 同时台风期间较高的风速会引起巨大的台风浪. 本文考虑台风经过期间独特的风场及波浪场, 开展风浪联合作用对大型单桩海上风机影响的研究. 基于DTU 10 MW大型单桩风机, 运用一体化分析软件SIMA建立风浪联合作用下大型单桩风机的耦合数值模型, 研究台风经过不同阶段大型风力机的动力响应特性. 计算结果显示, 叶片变桨能有效降低台风经过时风机叶片所受风载荷, 变桨状态下单桩风机所受风载荷主要来源于塔筒. 在台风经过的不同阶段, 大型单桩海上风机结构表现出不同的动力特性. 台风全过程塔筒运动均受波浪激发一阶频率控制, 塔基上方结构动力载荷以惯性载荷为主, FOVS至FEWS阶段及BOVS阶段至BEWS阶段塔筒运动一阶频率处响应能量增长较小, 响应能量向低频及波频转移. 塔基下方泥面线处剪力响应受波频控制, 弯矩响应受一阶频率控制.   相似文献   

13.
In coated nanowires, the surface/interface effects are particularly prominent due to a larger ratio of surface area to volume. In this paper, the effect of surface/interface stress on the macroscopic dynamic stress concentration around two nanowires under anti-plane shear waves is studied. The analytical solutions of displacements around the coated nanowires, in the coating layers, and inside the nanowires are expressed by wave function expansion method. The expanded mode coefficients are determined by satisfying the boundary conditions at the two interfaces around the nanowires. To accomplish the superposition of displacement fields, the addition theorem for cylindrical wave function is employed. Analyses show that the effect of interface properties on the dynamic stress is significantly related to the wave frequency, the material properties of nanowires and coating layers, and the relative position and distance between the two nanowires. If the wires and coating layers are softer, the dynamic stress decreases greatly, and the interface effect on the dynamic stress is also little. The results may be potentially useful for providing information on the mechanical properties and interactions among array of nanowires under different external mechanical stimulus.  相似文献   

14.
Green’s functions for Biot’s dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green’s functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term “decoupling coefficient” for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green’s functions. The correctness of the solution is demonstrated by numerically comparing the current solution with Cheng’s previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green’s functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.  相似文献   

15.
多孔饱和半空间上弹性圆板垂直振动的积分方程   总被引:5,自引:0,他引:5  
金波 《力学学报》2000,32(1):78-86
应用新的方法求解多孔饱和固体的动力基本方程-Biot波动方程,首先把Biot波动方程化为仅有土骨架位移和孔隙水压力的偏微分方程组,并且逐次解耦方法(不引入位移势函数)求解此偏微分方程组,然后按混合边值条件建立多孔饱和半空间上弹性圆板垂直振动的对偶积分方程,用Abel变换化对偶积分方程为第二类Fredholm积分方程。文中考虑两种孔隙流体的表面边界条件:(a)半空间表面(包括圆板与半空间的接触面)是  相似文献   

16.
Based on the complex variable function method, a new approach for solving the scattering of plane elastic waves by a hole with an arbitrary configuration embedded in an infinite poroelastic medium is developed in the paper. The poroelastic medium is described by Biot's theory. By introducing three potentials, the governing equations for Biot's theory are reduced to three Helmholtz equations for the three potentials. The series solutions of the Helmholtz equations are obtained by the wave function expansion method. Through the conformal mapping method, the arbitrary hole in the physical plane is mapped into a unit circle in the image plane. Integration of the boundary conditions along the unit circle in the image plane yields the algebraic equations for the coefficients of the series solutions. Numerical solution of the resulting algebraic equations yields the displacements, the stresses and the pore pressure for the porous medium. In order to demonstrate the proposed approach, some numerical results are given in the paper.  相似文献   

17.
颗粒材料中致密波结构研究   总被引:1,自引:1,他引:0  
采用一维两相流模型与相应颗粒构形应力函数,研究了致密波的形成及其结构.用简化两相流模型系统地讨论致密波对有关因素的依赖关系.分析指出:小于基体材料音速的致密波仅能在非理想颗粒材料中存在,从波前到波后,所有状态物理量光滑过渡.大于基体材料音速的致密波,波头可能存在间断.应力函数与致密粘性确定后,致密波速度决定致密波结构、宽度、终态压实度.采用一维两相流模型模拟了活塞驱动颗粒床形成致密波这一动态过程.用线方法(MOL)对该方程组求数值解.计算表明,经过短暂的非稳态过程,颗粒床中形成一稳态致密波.分析了活塞速度与初始孔隙率对致密波结构的影响,并对简化两相流模型与两相流模型的计算结果进行了对比.  相似文献   

18.
本文用水下电火花微爆炸产生重复性极佳的球形冲击波,用双曝光全息干涉法测量了液电冲击波的传播,并观察到冲击波与水下电极之间的相互作用.实验结果表明此法适用于液电冲击波的测量,特别适用于由冲击波波前位移来确定其峰值压力分布.  相似文献   

19.
Transient dynamic responses of an elastic cracked solid subjected to in-plane surface loadings are investigated in this study. Two vertical cracks, a surface-breaking crack and a sub-surface crack, are considered. The frequency responses of the plane strain problem are calculated by the computational mechanics combining the finite element method with the boundary integral equation. The finite element method is used for the near-field enclosing the crack, while the boundary integral equation is applied for the far-field to satisfy the Sommerfeld radiation condition. The transient responses are then obtained using fast Fourier transform. Surface displacements, crack opening displacements, and dynamic stress intensity factors are presented to show the significant effects of the cracks. The interaction between the elastic waves and the cracks as well as the mode conversion phenomena can be observed and understood through the numerical simulations.  相似文献   

20.
Effects of SH waves in a functionally graded plate   总被引:1,自引:0,他引:1  
A computational method is presented to investigate SH waves in functionally graded material (FGM) plates. The FGM plate is first divided into quadratic layer elements (QLEs), in which the material properties are assumed as a quadratic function in the thickness direction. A general solution for the equation of motion governing the QLE has been derived. The general solution is then used together with the boundary and continuity conditions to obtain the displacement and stress in the wave number domain for an arbitrary FGM plate. The displacements and stresses in the frequency domain and time domain are obtained using inverse Fourier integration. Furthermore, a simple integral technique is also proposed for evaluating modified Bessel functions with complex valued order. Numerical examples are presented to demonstrate this numerical technique for SH waves propagating in FGM plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号