首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A hundred years after the founding paper by E.C. Bingham, we briefly review the impact of the yield stress concept and current interest in it on the scientific community. We show that yield stress fluids have only emerged as a relevant fluid type, in both mechanics and physics, over the past 20 years, opening the way to a broad range of new study areas.  相似文献   

2.
WHITTAKER'SREDUCTIONMETHODFORPOINCARE'sDYNAMICALEQUATIONSQ.K.Ghori(DepartmentofMathematicalSciences,KingFahdUniversityofPetro...  相似文献   

3.
We propose a resolution of d’Alembert’s Paradox comparing observation of substantial drag/lift in fluids with very small viscosity such as air and water, with the mathematical prediction of zero drag/lift of stationary irrotational solutions of the incompressible inviscid Euler equations, referred to as potential flow. We present analytical and computational evidence that (i) potential flow cannot be observed because it is illposed or unstable to perturbations, (ii) computed viscosity solutions of the Euler equations with slip boundary conditions initiated as potential flow, develop into turbulent solutions which are wellposed with respect to drag/lift and which show substantial drag/lift, in accordance with observations.  相似文献   

4.
An approach to describe the turbulent flow through a complex geometry (e.g., urban area) by means of an analogy to flows through porous media is presented. Therefore, a modification of the original Darcy’s law is proposed, and its application is tested in a prototype problem with an idealized complex geometry using large eddy simulations. The numerical results indicate the validity of the modified Darcy’s law for the chosen setup.  相似文献   

5.
New analytical solutions for axisymmetric deformation of a viscous hollow circular cylinder on a rigid fibre are given. One of the solutions generalizes the famous Prandtl’s solution for compression of a rigid perfectly plastic layer between two rough, parallel plates and the other is a modification of Spencer’s solution for compression of an axisymmetric rigid perfectly plastic layer on a rigid fibre. All equations are satisfied exactly whereas some boundary conditions are approximated in a standard manner. Special attention is devoted to frictional interface conditions since these conditions result in additional limitations of the applicability of the solution when compared to that based on a rigid perfectly plastic models. In particular, difficulties with the convergence of numerical solutions under certain conditions can be explained with the use of results obtained. Therefore, the solutions can serve as benchmark problems for verifying numerical codes. The solutions are also adopted to predict the brittle fracture of fibres by means of an approach used in previous studies and confirmed by experiment.  相似文献   

6.
Since 1942 Archie??s law is used every day to estimate, from electrical measurements, the quantity of oil present in oil fields. In this article, we perform the first experimental analysis of electric conductivity in well controlled models of porous media. We used microfluidic networks (called micromodels in the oil industry jargon), incorporating thousands of pores, with controlled wettability. Different electrode and pore geometries are considered. In all cases the evolution of the conductivity with the conductive fluid fraction (??saturation??) clearly reveals the presence of percolation thresholds, signaling that as the fraction of the conductive fluid decreases below some critical value, there are no more pathways involving only channels entirely filled with the conductive fluid that connect the electrodes. This behavior is observed in all cases, for all the network/electrode geometries and wetting properties we investigated, and is consequently likely to reflect a genuine behavior for microfluidic ??2D?? networks. The existing models??based on percolation theory or on mean field approach??reproduce correctly the structure of this behavior, but generally at a semi-quantitative level. The most successful case is obtained with the effective medium theory (EMT) model, with drainage and perpendicular electrodes. This outcome suggests that, despite the complexity of these systems, very simple models can describe correctly the physics of the system. Nonetheless, more precise modeling requires case-by-case studies. Our results are consistent with the current body of knowledge accumulated for decades on three-dimensional samples. The key point is that in 3D systems, owing to topological reasons, the threshold is extremely low in terms of water saturations. Archie??s law completely neglects the threshold effect. Nonetheless the percolation threshold should not be overlooked, and modeling should take this aspect systematically into account, as it is already done by several investigators.  相似文献   

7.
Improvement of FEM’s dynamic property   总被引:1,自引:0,他引:1  
The discretization size is limited by the sampling theorem, and the limit is one half of the wavelength of the highest frequency of the problem. However, one half of the wavelength is an ideal value. In general, the discretization size that can ensure the accuracy of the simulation is much smaller than this value in the traditional finite element method. The possible reason of this phenomenon is analyzed in this paper, and an efficient method is given to improve the simulation accuracy.  相似文献   

8.
The Saint–Venant torsional problem for homogeneous, monoclinic piezoelectric beams is formulated in terms of Prandtl’s stress function and electric displacement potential function. The analytical approach presented in this paper generalizes the known formulation of Prandtl’s solution which refers to homogeneous elastic beams. The Prandtl’s stress function and electric displacement potential function satisfy the so called coupled Dirichlet problem (CDP) in the cross-sectional domain. A direct and a variational formulation are developed. Exact analytical solutions for solid elliptical cross-section and hollow circular cross-section and an approximate solution based on a variational formulation for thin-walled closed cross-section are presented.  相似文献   

9.
The second-grade fluid flow due to a rotating porous stretchable disk is modeled and analyzed. A porous medium is characterized by the Darcy relation. The heat and mass transport are characterized through Cattaneo-Christov double diffusions. The thermal and solutal stratifications at the surface are also accounted. The relevant nonlinear ordinary differential systems after using appropriate transformations are solved for the solutions with the homotopy analysis method (HAM). The effects of various involved variables on the temperature, velocity, concentration, skin friction, mass transfer rate, and heat transfer rate are discussed through graphs. From the obtained results, decreasing tendencies for the radial, axial, and tangential velocities are observed. Temperature is a decreasing function of the Reynolds number, thermal relaxation parameter, and Prandtl number. Moreover, the mass diffusivity decreases with the Schmidt number.  相似文献   

10.
Forchheimer’s equation, considered to be a nonlinear extension of the linear Darcy’s law, applies to a broader range of velocities for flows through porous media. In this article, we examine sensitivity of the Forchheimer model to permeability κ and a nonlinear coefficient β, using both experimental and computational data for validation. In addition to the direct observations, we were able to identify the role of temperature which influences the model by means of viscosity and density of the fluid. To get a quantifiable answer, we introduce a sensitivity index. Our results reveal a significant impact of the temperature to the model behavior.  相似文献   

11.
We derive the static and dynamic Green’s functions for one-, two- and three-dimensional infinite domains within the formalism of peridynamics, making use of Fourier transforms and Laplace transforms. Noting that the one-dimensional and three-dimensional cases have been previously studied by other researchers, in this paper, we develop a method to obtain convergent solutions from the divergent integrals, so that the Green’s functions can be uniformly expressed as conventional solutions plus Dirac functions, and convergent nonlocal integrals. Thus, the Green’s functions for the two-dimensional domain are newly obtained, and those for the one and three dimensions are expressed in forms different from the previous expressions in the literature. We also prove that the peridynamic Green’s functions always degenerate into the corresponding classical counterparts of linear elasticity as the nonlocal length tends to zero. The static solutions for a single point load and the dynamic solutions for a time-dependent point load are analyzed. It is analytically shown that for static loading, the nonlocal effect is limited to the neighborhood of the loading point, and the displacement field far away from the loading point approaches the classical solution. For dynamic loading, due to peridynamic nonlinear dispersion relations, the propagation of waves given by the peridynamic solutions is dispersive. The Green’s functions may be used to solve other more complicated problems, and applied to systems that have long-range interactions between material points.  相似文献   

12.
The Green’s functions of a two-phase saturated medium subjected to a concentrated force are known to play an important role in seismology, earthquake engineering, soil dynamics, geophysics, and dynamic foundation theory. This paper presents a physical method for obtaining the dynamic Green’s functions of a two-phase saturated medium for materials considered to be isotropic and for low frequencies. First, the pore-fluid pressure in a two-phase saturated medium is divided into two parts: flow pressure and deformation pressure. Next, based on the compatibility condition of Biot’s equation and the property of the δ-function, the problem of coupled_fast and slow dilational waves is solved using the decomposition condition of the potential dilation field. The Green’s function for a concentrated force is then obtained by solving Biot’s complex modular equations, and their physical characteristics are discussed. The behavior of Green’s functions for the solid and fluid phases of a δ-impulsive force is investigated, from which the Green’s functions for a unit Heaviside force are also obtained by time integration. Finally, the present Green’s functions for a unit Heaviside force are compared with those obtained by a purely mathematical method; the two differ in form, but the numerical results are identical. The physical meaning of the expressions of Green’s functions obtained in this paper is evident. Therefore, the results may benefit future research on the dynamic responses of a two-phase saturated medium.  相似文献   

13.
半无限弹性空间域内点加振格林函数的计算   总被引:6,自引:0,他引:6  
林皋  李炳奇  申爱国 《力学学报》1994,26(5):583-592
本文给出了满足全部自由面边界条件的半无限弹性空间域内点加振的Green函数,利用变形的Hankel函数,在复数域内进行无限积分的有限化,从而使Green函数的计算变得比较简单和方便。  相似文献   

14.
We establish exact mathematical links between the n-dimensional anisotropic and isotropic Green’s functions for diffusion phenomena for an infinite space, a half-space, a bimaterial and a multilayered space. The purpose of this work is not to attempt to present a solution procedure, but to focus on the general conditions and situations in which the anisotropic physical problems can be directly linked with the Green’s functions of a similar configuration with isotropic constituents. We show that, for Green’s functions of an infinite and a half-space and for all two-dimensional configurations, the exact correspondences between the anisotropic and isotropic ones can always be established without any regard to the constituent conductivities or any other information. And thus knowing the isotropic Green’s functions will readily provide explicit expressions for anisotropic Green’s functions upon back transformation. For three- and higher-dimensional bimaterials and layered spaces, the correspondence can also be found but the constituent conductivities need to satisfy further algebraic constraints. When these constraints are fully satisfied, then the anisotropic Green’s functions can also be obtained from those of the isotropic ones, or at least in principle.  相似文献   

15.
An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman–Thigpen–Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of “low frequency” underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g., seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.  相似文献   

16.
Wang  Fang  Ding  Tao  Han  Xueli  Lv  Lei 《Transport in Porous Media》2020,133(2):293-312

The dynamic responses of an anisotropic multilayered poroelastic half-space to a point load or a fluid source are studied based on Stroh formalism and Fourier transforms. Taking the boundary conditions and the continuity of the materials into consideration, the three-dimensional Green’s functions of generalized concentrated forces (force and fluid source) applied at the free surface, interface and in the interior of a layer are derived in the Fourier transformed domain, respectively. The actual solutions in the frequency domain can further be acquired by inverting the Fourier transform. Finally, numerical examples are carried out to verify the presented theory and discuss the Green’s fields due to three cases of a concentrated force or a fluid source applied at three different locations for an anisotropic multilayered poroelastic half-space.

  相似文献   

17.
The present paper describes an efficient algorithm to integrate the equations of motion implicitly in the frequency domain. The standard FEM displacement model (Galerkin formulation) is employed to perform space discretization, and the time-marching process is carried out through an algorithm based on the Green’s function of the mechanical system in nodal coordinates. In the present formulation, mechanical system Green’s functions are implicitly calculated in the frequency domain. Once the Green’s functions related matrices are computed, a time integration procedure, which demands low computational effort when applied to non-linear mechanical systems, becomes available. At the end of the paper numerical examples are presented in order to illustrate the accuracy of the present approach.  相似文献   

18.
Two-dimensional (2-D) and three-dimensional (3-D) time-harmonic Green’s functions for linear magnetoelectroelastic solids are derived in this paper by means of Radon-transform. Displacement field and electric and magnetic potentials in a fully anisotropic magnetoelectroelastic infinite solid due to a time-harmonic point force, point charge and magnetic monopole are obtained in form of line integrals over a unit circle in 2-D case and surface integrals over a unit sphere in 3-D case. This dynamic fundamental solution is then split into the sum of regular dynamic plus singular terms. The singular terms coincide with the Green’s functions for the static problem and may be further reduced to closed form expressions. The proposed Green’s functions can be used in the corresponding boundary element method (BEM) formulation.  相似文献   

19.
Green’s functions of a point dislocation as well as a concentrated force for the plane problem of an infinite plane containing an arbitrarily shaped hole under stress, displacement, and mixed boundary conditions are stated. The Green’s functions are obtained in closed forms by using the complex stress function method along with the rational mapping function technique, which makes it possible to deal with relatively arbitrary configurations. The stress functions for these problems consist of two parts: a principal part containing singular and multi-valued terms, and a complementary part containing only holomorphic terms. These Green’s functions can be derived without carrying out any integration. The applications of the Green’s functions are demonstrated in studying the interaction of debonding and cracking from an inclusion with a line crack in an infinite plane subjected to remote uniform tension. The Green’s functions should have many other potential applications such as in boundary element method analysis. The boundary integral equations can be simplified by using the Green’s functions as the kernels.  相似文献   

20.
集中力作用下的两相饱和介质位移场Green函数   总被引:11,自引:1,他引:10  
以复模两相饱和介质Biot动力学方程为基础,根据该方程D'Alembert解的Fourier变换所属的Homholtz方程特性,由Biot方程解的相容性条件及δ函数性质较好地解决了快、慢纵波位势的耦合问题.较为简便地得到了两相饱和介质在集中力作用下低频(ω<ωc)时的频域和时域的Green函数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号