首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The two-dimensional motion of a cylinder in a viscous fluid between two parallel walls of a vertical channel is studied. It is found that when the cylinder moves very closely along one of the channel walls, it always rotates in the direction opposite to that of contact rolling along the nearest wall. When the cylinder is away from the walls, its rotation depends on the Reynolds number of the flow. In this study two numerical methods were used. One is for the unsteady motion of a sedimenting cylinder initially released from a position close to one of the channel walls, where the Navier-Stokes equations are solved for the fluid and Newton's equations of motion are solved for the rigid cylinder. The other method is for the steady flow in which a cylinder is fixed in a uniform flow field where the channel walls are sliding past the cylinder at the speed of the approaching flow, or equivalently a cylinder is moving with a constant velocity in a quiescent fluid. The flow field, the drag, the side force (lift), and the torque experienced by the cylinder are studied in detail. The effects of the cylinder location in the channel, the size of the channel relative to the cylinder diameter, and the Reynolds number of the flow are examined. In the limit when the cylinder is translating very closely along one of the walls, the flow in the gap between the cylinder and the wall is solved analytically using lubrication theory, and the numerical solution in the other region is used to piece together the whole flow field.This research was supported by NSF DMR91-20668 through the Laboratory for Research on the Structure of Matter at the University of Pennsylvania and from the Research Foundation of the University of Pennsylvania.  相似文献   

2.
The experimentally observed self-oscillations of a cylinder mounted with a narrow gap in a plane channel are simulated. The added masses of the cylinder are calculated in the framework of ideal fluid theory by a generalized image method. In order to describe the self-oscillations in a real fluid, some dissipative factors and an impulsive impact force exerted on the cylinder are introduced.  相似文献   

3.
The salient features of the interaction between a free-surface flow and a cylinder of rectangular cross-section are investigated and discussed. Laboratory-scale experiments are performed in a water channel under various flow conditions and elevations of the cylinder above the channel floor. The flow field is characterized on the basis of time-averaged and fluctuating local velocity measurements. Dynamic loadings on the cylinder are measured by two water-insulated dynamometers placed inside the cylinder structure. Starting from frequency and spectral analyses of the force signals, insights on the relationship between force dominant frequencies and the Strouhal number of the vortex shedding phenomenon are provided. Experimental results highlight the strong influence of the asymmetric configuration imposed by the two different boundary conditions (free surface and channel floor) on (i) the mean force coefficients and (ii) the vortex shedding frequencies. We provide an analysis of the nature of the dependence of average force coefficients on relevant dimensionless groups, i.e., the Reynolds number, normalized flow depth and cylinder submersion.  相似文献   

4.
Dynamic fluid–solid interactions are widely found in chemical engineering, such as in particle-laden flows, which usually contain complex moving boundaries. The immersed boundary method (IBM) is a convenient approach to handle fluid–solid interactions with complex geometries. In this work, Uhlmann's direct-forcing IBM is improved and implemented on a supercomputer with CPU–GPU hybrid architecture. The direct-forcing IBM is modified as follows: the Poisson's equation for pressure is solved before evaluation of the body force, and the force is only distributed to the Cartesian grids inside the immersed boundary. A multidirect forcing scheme is used to evaluate the body force. These modifications result in a divergence-free flow field in the fluid domain and the no-slip boundary condition at the immersed boundary simultaneously. This method is implemented in an explicit finite-difference fractional-step scheme, and validated by 2D simulations of lid-driven cavity flow, Couette flow between two concentric cylinders and flow over a circular cylinder. Finally, the method is used to simulate the sedimentation of two circular particles in a channel. The results agree very well with previous experimental and numerical data, and are more accurate than the conventional direct-forcing method, especially in the vicinity of a moving boundary.  相似文献   

5.
We present a curious situation of a fluid-flow wherein the body experiences non-fluctuating fluid-flow force despite being associated with an unsteady flow comprising of sustained vortex shedding. The flow past a circular cylinder at Re=100 is investigated. It is shown that the spatio-temporal periodicity of the oblique vortex shedding results in constant-in-time force experienced by a cylinder placed in uniform flow. On the contrary, parallel vortex shedding leads to fluid force that fluctuates with time. It is found that, both, the parallel and oblique shedding are linearly unstable eigenmodes of the Re=100 steady flow past a cylinder.  相似文献   

6.
A circular cylinder placed in a uniform flow, and that spans the entire length between two side walls, may experience either parallel or oblique vortex shedding depending on the end conditions. It was shown by Mittal and Sidharth (2014) that the spatio-temporal periodicity of the oblique vortex shedding results in constant-in-time force experienced by the cylinder. On the contrary, parallel vortex shedding leads to fluid force that fluctuates with time. The free vibrations of a circular cylinder, in the presence of a wall, are investigated. For comparison, computations with end walls, where a slip condition on velocity is specified, are also carried out. The Reynolds number, based on the diameter of the cylinder and free-stream speed of the flow, is Re=100. The initial condition for the free vibrations is the fully developed unsteady flow past a stationary cylinder with oblique shedding. It is found that as the amplitude of vibration of the cylinder builds up, the vortices shed from the cylinder align with its axis leading to parallel shedding. The response of the cylinder is associated with two branches: initial and lower. On the lower branch, the response of the cylinder is virtually identical from two- and three-dimensional computations. The flow as well as the response is different on the initial branch and outside the synchronization regime. Forced vibrations confirm the phenomena.  相似文献   

7.
An exact solution of the magnetohydrodynamic equations is constructed which describes steady vortex flow in a stationary cylinder on the axis of which a conductor carrying a known current is located. The solution is obtained under the assumption that the fluid is viscous and has finite electrical conductivity and that the magnetic field has only the axial and azimuthal components in a cylindrical coordinate system. It is found that the action of the Lorentz force is compensated by changing the pressure. Fluid flow occurs from the periphery to the axis of the cylinder under a pressure gradient, with flow rotation and swirling. The fluid flow causes a concentration of the magnetic lines near the axis of the cylinder, providing an exponential decrease in the magnetic field strength with distance from the axis. This flow can be considered as a model of a local increase in the magnetic field strength due to the transfer of its force lines by the flow of the electrically conducting fluid.  相似文献   

8.
The jet flows induced around a submerged channel due to the hot inner channel walls and the flow inside the channel are calculated. The formation of high-and low-density regions at the inlet and outlet of the channel is detected. The dependence of the flow rate on the channel orientation relative to the gravity force is analyzed. The onset of coherent flow structures results in the development of unsteady oscillating flows. Natural convection in the fluid is studied using the JoinCAD/FEM program package. The regularized Oberbeck-Boussinesq equations are solved using a finite-element method with the same order of the approximating functions.  相似文献   

9.
Aeroelastic vibrations of a plate aligned at a zero angle of attack in a viscous incompressible fluid flow in a channel with parallel walls are considered within the framework of a plane model. Forced vibrations of the plate in the transverse direction give rise an unsteady component of the flow friction force, induced by the perturbation of the fluid flow velocity by the vibrating plate. Under the assumption of the laminar character of the fluid flow, it is demonstrated that this force can excite streamwise vibrations of the plate if the channel width is small as compared with the plate length; these streamwise vibrations have the same order as the transverse vibrations of the plate excited by external forces.  相似文献   

10.
基于反馈力浸入边界法模拟复杂动边界流动   总被引:2,自引:1,他引:1  
浸入边界法是模拟流固耦合的重要数值方法之一。本文采用反馈力浸入边界方法,对旋转圆柱和水轮机活动导叶旋转摆动绕流后的动边界流场进行数值模拟。其中,固体边界采用一系列离散的点近似代替,流体为不可压缩牛顿流体,使用笛卡尔自适应加密网格,利用有限差分法进行求解。固体对流场的作用通过构造适宜的反馈力函数实现。本文首先通过旋转圆柱绕流的计算结果同实验结果进行对比,吻合较好,验证了该计算方法的可靠性。然后针对水电站水力过渡过程中水轮机活动导叶旋转摆动绕流后的动边界流场进行数值模拟,得到导叶动态绕流后的流场分布特性和涡结构的演化特性。  相似文献   

11.
The behavior of a low-viscosity fluid in a rotating horizontal circular cylinder is investigated experimentally. The stability of the centrifuged layer, the motion of the fluid with respect to the cavity, the excitation of inertial waves on the fluid surface, and the effect of the waves on the stability and flow structure are studied over a wide region of relative occupancy of the cavity. The results are analyzed from the viewpoint of vibrational mechanics in which the motion is generated by the oscillations of the fluid with respect to the cavity and the gravity force plays the role of the force oscillating in the cavity reference system.  相似文献   

12.
将光滑界面法引入到格子Boltzmann方法中分析粘弹性流体绕流问题,分别采用单松弛模型和对流扩散模型求解运动方程和Oldroyd-B本构方程,针对圆形和椭圆内部边界条件,给出连续界面插值函数,在此基础上,运用光滑界面法将内部边界转换为作用力项施加到演化方程中。首先分析圆柱绕流问题,给出不同材料参数情况下的流场分布和阻力系数计算结果,比较发现与宏观数值模拟结果相吻合。将模型拓展到绕椭圆流动中,分析椭圆形状和材料参数对粘弹性流体绕柱流的影响,发现随着椭圆长轴与短轴比值的增加和维森伯格数的增加,阻力系数逐渐下降,并且长短轴比对迭代收敛有较大影响。  相似文献   

13.
One of the most basic examples of fluid-structure interaction is provided by a tethered body in a fluid flow. The tendency of a tethered buoy to oscillate when excited by waves is a well-known phenomenon; however, it has only recently been found that a submerged buoy will act in a similar fashion when exposed to a uniform flow at moderate Reynolds numbers, with a transverse peak-to-peak amplitude of approximately two diameters over a wide range of velocities. This paper presents results for the related problem of two-dimensional simulations of the flow past a tethered cylinder. The coupled Navier–Stokes equations and the equations of motion of the cylinder are solved using a spectral-element method. The response of the tethered cylinder system was found to be strongly influenced by the mean layover angle as this parameter determined if the oscillations would be dominated by in-line oscillations, transverse oscillations or a combination of the two. Three branches of oscillation are noted, an in-line branch, a transition branch and a transverse branch. Within the transition branch, the cylinder oscillates at the shedding frequency and modulates the drag force such that the drag signal is dominated by the lift frequency. It is found that the mean amplitude response is greatest at high reduced velocities, i.e., when the cylinder is oscillating predominantly transverse to the fluid flow. Furthermore, the oscillation frequency is synchronized to the vortex shedding frequency of a stationary cylinder, except at very high reduced velocities. Visualizations of the pressure and vorticity in the wake reveal the mechanisms behind the motion of the cylinder.  相似文献   

14.
The distortion of a magnetic field by the flow of a conducting fluid past a cylinder of the same permeability is found for small and infinite values of the magnetic Reynolds number. For small values good agreement is obtained with the results of Seebass and Tamada when the flow is aligned with the field at large distances from the body.For infinite magnetic Reynolds number, all the lines of force are dragged into the cylinder and upstream and downstream wake regions are present on the axis of the flow.  相似文献   

15.
A theoretical study is presented for the two-dimensional creeping flow caused by a long circular cylindrical particle translating and rotating in a viscous fluid near a large plane wall parallel to its axis. The fluid is allowed to slip at the surface of the particle. The Stokes equations for the fluid velocity field are solved in the quasi-steady limit using cylindrical bipolar coordinates. Semi-analytical solutions for the drag force and torque acting on the particle by the fluid are obtained for various values of the slip coefficient associated with the particle surface and of the relative separation distance between the particle and the wall. The results indicate that the translation and rotation of the confined cylinder are not coupled with each other. For the motion of a no-slip cylinder near a plane wall, our hydrodynamic drag force and torque results reduce to the closed-form solutions available in the literature. The boundary-corrected drag force and torque acting on the particle decrease with an increase in the slip coefficient for an otherwise specified condition. The plane wall exerts the greatest drag on the particle when its migration occurs normal to it, and the least in the case of motion parallel to it. The enhancement in the hydrodynamic drag force and torque on a translating and rotating particle caused by a nearby plane wall is much more significant for a cylinder than for a sphere.  相似文献   

16.
The ideal fluid flow due to fluid penetration through the boundary of an infinitely long solid cylinder in contact with a solid wall is determined. A formula is derived according to which the force exerted by a finite-length part of the cylinder on the wall is directed into the wall and can thus have an arbitrarily large absolute value. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 1, pp. 82–84, January–February, 2006.  相似文献   

17.
In this work, we investigate the dynamics of the near wake in a turbulent flow going past a circular cylinder with/without particles at a moderate Reynolds number using a direct numerical simulation method. High-order finite-deference schemes are applied to solve for the bulk fluid properties, and a Lagrangian approach is adopted to track the individual particles. The single-phase flow is analysed and validated using previous experimental data. Two converged states, U- and V-shaped, are observed in the near wake, which are consistent with the experimental results. For the two-phase flow, the addition of smaller particles shortens the length of the recirculation region and causes a V-shaped profile to form behind the circular cylinder. Furthermore, the particles increase the drag force from the circular cylinder and suppress the vortex shedding frequency. An increase in the turbulent statistics in the very near wake and a decrease in the turbulent statistics further downstream are also observed.  相似文献   

18.
The flow past a cylinder in a channel with the aspect ratio of 2:1 for the upper convected Maxwell (UCM) fluid and the Oldroyd-B fluid with the viscosity ratio of 0.59 is studied by using the Galerkin/Least-square finite element method and a p-adaptive refinement algorithm. A posteriori error estimation indicates that the stress-gradient error dominates the total error. As the Deborah number, De, approaches 0.8 for the UCM fluid and 0.9 for the Oldroyd-B fluid, strong stress boundary layers near the rear stagnation point are forming, which are characterized by jumps of the stress-profiles on the cylinder wall and plane of symmetry, huge stress gradients and rapid decay of the gradients across narrow thicknesses. The origin of the huge stress-gradients can be traced to the purely elongational flow behind the rear stagnation point, where the position at which the elongation rate is of 1/2De approaches the rear stagnation point as the Deborah number approaches the critical values. These observations imply that the cylinder problem for the UCM and Oldroyd-B fluids may have physical limiting Deborah numbers of 0.8 and 0.9, respectively.The project supported by the National Natural Science Foundation of China (50335010 and 20274041) and the MOLDFLOW Comp. Australia.  相似文献   

19.
In relation to microrheology of blood, a theoretical approach to the motion of a red blood cell in a plane Couette flow between two parallel plates is made with emphasis on effects of wall. The red blood cell is assumed to be an elliptic cylindrical particle with a thin, inextensible membrane moving like a tank-tread along its perimeter and to contain a Newtonian fluid inside. Fluid motions are analysed numerically both inside and outside the particle on the basis of the Stokes equations, using the finite element method.A quasi-static equilibrium condition leads to the solution for the motion of the particle. It is shown that two types of motion exist (a stationary orientation motion and a flipping motion), depending on the viscosity ratio of inner to outer fluid, the axis ratio of the elliptic cylinder and the ratio of particle size to channel width. The results are applied to capillary blood flow.  相似文献   

20.
In this paper, numerical calculations have been performed to analyse the influence of the orbital motion of an inner cylinder on annular flow and the forces exerted by the fluid on the inner cylinder when it is rotating eccentrically. The flow considered is fully developed laminar flow driven by axial pressure gradient. It is shown that the drag of the annular flow decreases initially and then increases with the enhancement of orbital motion, when it has the same direction as the inner cylinder rotation. If the eccentricity and rotation speed of the inner cylinder keep unchanged (with respect to the absolute frame of reference), and the orbital motion is strong enough that the azimuthal component (with respect to the orbit of the orbital motion) of the flow‐induced force on the inner cylinder goes to zero, the flow drag nearly reaches its minimum value. When only an external torque is imposed to drive the eccentric rotation of the inner cylinder, orbital motion may occur and, in general, has the same direction as the inner cylinder rotation. Under this condition, whether the inner cylinder can have a steady motion state with force equilibrium, and even what type of motion state it can have, is related to the linear density of the inner cylinder. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号