首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Experimentally observed self-oscillations of a cylinder in a plane channel whose width is slightly greater than the cylinder diameter under the impact of the incoming fluid flow are modeled. Within the model of a nonseparated potential flow around the cylinder, the coefficients of added mass of the cylinder are calculated with the help of the generalized method of images. When the cylinder touches the channel wall, the circulation sign changes, and its value is determined by the boundary element method and the no-slip condition for the fluid at the contact point. The Joukowski force and the drag force proportional to the square of velocity are taken into account in the equations of motion of cylinder.  相似文献   

2.
Results of numerical simulations and experimental investigations of self-oscillations arising in the case of impingement of an overexpanded or underexpanded jet onto an obstacle with a spike are reported. The mechanisms of the emergence and maintaining of self-oscillations for overexpanded and underexpanded jets are elucidated. It is demonstrated that self-oscillations are caused by disturbances in a supersonic jet, which induce mass transfer between the supersonic flow and the region between the shock wave and the obstacle. The feedback is ensured by acoustic waves generated by the radial jet on the obstacle. These waves propagate in the gas surrounding the jet, impinge onto the nozzle exit, and initiate disturbances of the supersonic jet parameters. In the overexpanded jet, these disturbances penetrate into the jet core, where they are amplified in oblique shock waves.  相似文献   

3.
An approximate method is considered for determining the amplitude of self-oscillations of a freight bogie. Apart from frequency, the determining parameters of the self-oscillations are the amplitudes and the phase shifts of the peak and zero values of the variables relative to the peak and zero values of one of the phase variables.  相似文献   

4.
The steady mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder in a stream flowing vertically upwards is numerically studied for both cases of heated and cooled cylinders. The governing partial differential equations are transformed into dimensionless forms using an appropriate transformation and then solved numerically using the Keller-box method. The comparison between the solutions obtained and those for a Newtonian fluid is found to be very good. Effects of the mixed convection and elasticity parameters on the skin friction and heat transfer coefficients for a fluid having the Prandtl number equal to one are also discussed. It is found that for some values of the viscoelastic parameter and some negative values of the mixed convection parameter (opposing flow) the boundary layer separates from the cylinder. Heating the cylinder delays separation and can, if the cylinder is warm enough, suppress the separation completely. Similar to the case of a Newtonian fluid, cooling the cylinder brings the separation point nearer to the lower stagnation point. However, for a sufficiently cold cylinder there will not be a boundary layer.  相似文献   

5.
The plane problem of the motions of a three-layer fluid initiated by the oscillations of a circular cylinder is solved in the linear formulation in the Boussinesq approximation. The cylinder is completely immersed in the linearly stratified middle layer, and the upper and lower layers are homogeneous and bounded by rigid horizontal walls. The fluid is assumed to be ideal and incompressible. The added mass and damping coefficients are calculated as functions of the oscillation frequency of the cylinder and the layer thicknesses.  相似文献   

6.
The two-dimensional motion of a cylinder in a viscous fluid between two parallel walls of a vertical channel is studied. It is found that when the cylinder moves very closely along one of the channel walls, it always rotates in the direction opposite to that of contact rolling along the nearest wall. When the cylinder is away from the walls, its rotation depends on the Reynolds number of the flow. In this study two numerical methods were used. One is for the unsteady motion of a sedimenting cylinder initially released from a position close to one of the channel walls, where the Navier-Stokes equations are solved for the fluid and Newton's equations of motion are solved for the rigid cylinder. The other method is for the steady flow in which a cylinder is fixed in a uniform flow field where the channel walls are sliding past the cylinder at the speed of the approaching flow, or equivalently a cylinder is moving with a constant velocity in a quiescent fluid. The flow field, the drag, the side force (lift), and the torque experienced by the cylinder are studied in detail. The effects of the cylinder location in the channel, the size of the channel relative to the cylinder diameter, and the Reynolds number of the flow are examined. In the limit when the cylinder is translating very closely along one of the walls, the flow in the gap between the cylinder and the wall is solved analytically using lubrication theory, and the numerical solution in the other region is used to piece together the whole flow field.This research was supported by NSF DMR91-20668 through the Laboratory for Research on the Structure of Matter at the University of Pennsylvania and from the Research Foundation of the University of Pennsylvania.  相似文献   

7.
The problem of construction of self-oscillations is solved as a control synthesis for a dynamical system in the presence of additive and parametric controls. Several mathematical models of such systems are discussed; self-oscillations with maximum amplitude are taken into account in these models. The orbital stability is proved; the domain of initiation of self-oscillations is constructed.  相似文献   

8.
The asymmetric transient response of a hollow cylinder confining a compressible fluid is analyzed. The cylinder is excited by radial displacement prescribed over a rectangular footprint on the cylinder’s outer surface. The special case of plane-strain is also analyzed. A comparison of dilatational stress in the solid cylinder and fluid pressure in the fluid-filled cylinder reveals how a projectile may decelerate faster in the latter.  相似文献   

9.
On the basis of the methods of the theory of codimension-two bifurcations of cylindrically symmetric hydrodynamic flows, using computer calculations, the motions of a fluid between rotating permeable coaxial cylinders are investigated near the intersection of the bifurcations corresponding to the origin of a stationary regime of the Taylor vortex type and self-oscillations with azimuthal waves.  相似文献   

10.
This paper considers the joint motion of an ideal fluid and a circular cylinder completely immersed in it at small times. It is assumed that the cylinder, which was initially at rest, moves in a horizontal direction with a constant acceleration. The dynamics of the internal and external free boundaries of the fluid at small times is studied. An asymptotic analysis of the form of the internal free surface near the separation points is performed. It is shown that at high acceleration of the circular cylinder, a large cavity is formed behind, with a strong perturbation of the external free surface of the fluid over the surface of the cylinder.  相似文献   

11.
Results of an experimental study and numerical simulation of self-oscillations of a supersonic radial jet exhausting from a plane radial nozzle into an ambient space are reported. It is demonstrated that flexural oscillations develop in the jet, leading to its destruction. Feedback ensured by acoustic waves in the gas surrounding the supersonic jet is found to play a key role in the emergence of self-oscillations.  相似文献   

12.
The wave propagation in an infinite, transversely isotropic solid cylinder of arbitrary cross-section immersed in fluid is studied using the Fourier expansion collocation method, within the framework of the linearized, three-dimensional theory of elasticity. The equations of motion of solid and fluid are respectively formulated using the constitutive equations of a transversely isotropic cylinder and the constitutive equation of an inviscid fluid. Three displacement potential functions are introduced to uncouple the equations of motion along the radial, circumferential and axial directions. The frequency equations of longitudinal and flexural (symmetric and antisymmetric) modes are analyzed numerically for an elliptic and cardioidal cross-sectional transversely isotropic solid cylinder of arbitrary cross-section immersed in fluid. The computed non-dimensional wavenumbers are presented in the form of dispersion curves for the material zinc. The general theory can be used to study any kind of cylinder with proper geometric relations.  相似文献   

13.
The plane problem of the small steady-state oscillations of a horizontal cylinder arbitrarily located in a three-layer fluid whose upper and lower layers are homogeneous and whose middle layer is linearly stratified is considered in the linear formulation using the Boussinesq approximation. The fluid is assumed to be ideal and incompressible. The method of mass sources distributed along the body contour is used in the internal wave generation regime and an integral equation for the fluid pressure is derived in the non-wave regime. The hydrodynamic load acting on the body is calculated as a function of the oscillation frequency of the cylinder and its location. The results are compared with experimental data.  相似文献   

14.
Measurements were made of the steady secondary flow which is caused by a cylinder executing small-amplitude oscillations perpendicular to the cylinder generators. Test fluids were a water-glycerine mixture and two non-Newtonian fluids: aqueous solutions of Separan AP-30 and PolyHall 295 polyacrylamide polymers. The fluids were contained in a cylinder whose center coincides with the rest position of the oscillating cylinder. Experimental results are consistent with a theoretical analysis for a three-constant Oldroyd fluid model in its simplified convected-Maxwell form. Both experiment and theory show that at an oscillation frequency of 40 Hz the secondary flow of the dilute polymer solutions is, essentially, in a sense opposite from that of a Newtonian fluid.  相似文献   

15.
Let an infinitely long cylinder move perpendicular to its length in an infinite mass of liquid which is at rest at infinity. If the cylinder is rigid, the whole effect of the presence of the liquid may be represented by adding to the inertia per unit length of the solid cylinder the mass per unit length of the displaced fluid. If, however, the cylinder is elastically deformable, the mass of the moving fluid depends on the change in shape of the, initially circular, cross-sections of the cylinder. Thus the added mass is no longer a constant, but a function of the pressure exerted by the fluid on the solid cylinder.  相似文献   

16.
The paper studies the relationship between the physical characteristics of a cylinder and the properties of normal axisymmetric waves in elastic–liquid waveguides. The cylinder is made of a compliant material in which the velocity of shear waves is less than the sonic velocity in a perfect compressible liquid. The complete system of dynamic elasticity equations and the wave equation are used to describe the wave fields in the elastic cylinder and fluid, respectively. This approach allows obtaining the dispersion characteristics of coupled normal waves in compound waveguides over wide ranges of frequencies and wavelengths. The curves of real, imaginary, and complex wave numbers versus frequency are plotted for specific pairs of waveguide materials. Computations are carried out for a thick-walled cylinder filled with a fluid and immersed in either vacuum or a fluid. It is found out that compliant and rigid materials of the cylinder affect differently the wave interaction process in elastic–liquid waveguides  相似文献   

17.
Results of the numerical solution of the problem of impingement of an overexpanded supersonic jet onto an obstacle are reported. The mass-flow-rate mechanism of self-oscillations is revealed. This mechanism consists of periodic changes in the regimes of gas inflow and outflow from the separation region to the jet around this region. It is shown that the shock-wave structure of the impinging supersonic jet exerts a significant effect on the amplitude of self-oscillations.  相似文献   

18.
The methods of the bifurcation theory of codimension two, together with computer calculations, are used to investigate stationary, periodic, and quasiperiodic flows with two and three independent frequencies, as well as chaotic regimes of fluid flow between two infinite rotating permeable concentric cylinders near the intersection of the bifurcations initiating secondary stationary flow and self-oscillations with azimuthal waves.  相似文献   

19.
Large eddy simulation is applied to model a fountain in a density-stratified fluid. The fountain is formed, as a vertical turbulent jet penetrates through a pycnocline. The jet flow is initiated by the formulation of a boundary condition in the form of an upward neutral-buoyancy fluid flow with the Gaussian axisymmetric mean-velocity profile and a given fluctuation level. It is shown that at a Froude number Fr higher than a certain critical value the fountain executes self-oscillations accompanied by internal wave generation within the pycnocline. The predominant self-oscillation mode is axisymmetric, when the fountain top periodically breaks down generating internal wave packets traveling toward the periphery of the computation domain. The characteristic frequency of the internal waves coincides with that of the fountain top oscillations and monotonically decreases with increase in Fr. The Fr-dependence of the fountain top oscillation amplitude obtained in the numerical solution is in good agreement with the predictions of the theoretical Landau model for the instability mode in the soft self-excitation regime.  相似文献   

20.
A quasilinear model of the self-oscillations in the Helmholtz resonator is developed. The conditions of existence, uniqueness, and stability of periodic solutions are determined using the Lyapunov-Poincaré, local integral manifold, and averaging methods. In the first approximation, the basic parameters of the self-oscillations are calculated and their qualitative features are studied. A thermodynamic interpretation of the gas self-oscillations in the resonator is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号