首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Anti-wear beams installed on water walls of circulating fluidized bed(CFB) boilers are one of the most effective ways to protect against water-wall erosion.Beam effects from,for example,beam size and superficial gas velocity were investigated on gas-solid hydrodynamics in a CFB test rig using CFD simulations and experimental methods.The downward flow of the wall layer solids is observed to be disrupted by the beam but is then restored some distance further downstream.When falling solids from the wall layer hit the anti-wear beam,the velocity of the falling solids decreases rapidly.A fraction of the solids accumulates on the beam.Below the beams,the falling solids have reduced velocities but upward-moving solids were observed on the wall.The effect of the beam increases with width and superficial gas velocity.Wear occurs mainly above the beam and its variation with width is different above to below the beam.There is an optimum width that,when combined with beam height,results in less erosion.  相似文献   

2.
A numerical method is used to model a capsule migration in a microchannel with small Reynolds number Re ≈ 0 . 01. The capsule is modeled as a liquid drop surrounded by a neo-Hookean elastic membrane. The numerical model combines immersed boundary with lattice Boltzmann method (IB-LBM). The LBM is used to simulate fixed Cartesian grid while the IBM is utilized to implement the fluid-structure interaction by a set of Lagrangian moving grids for the membrane. The effect of shear elasticity and bending stiffness are both considered. The results show the significance of elastic modulus and initial lateral position on deformation and morphological properties of a circular capsule. The wall effect becomes stronger as the capsule initial position gets closer to the channel wall. As the elastic modulus of membrane increases, the capsule undergoes less pronounced deformation and velocity in direction x is decreased, thus, the capsule motion is slower than the background flow. The best agreement between the present model and experiments for migration velocity takes place for the capsule with normal to moderate membrane elastic modulus. The results are in good agreement with experiment study of Coupier et al. and previous numerical studies. Therefore, the IB-LBM can be employed to make prediction in vitro and in vivo studies of capsule deformation.  相似文献   

3.
The effects of packing configurations on the phase transition of straight granular chute flow with two bottlenecks axe studied. The granular flow shows a dilute- to-dense flow transition when the channel width is varied, accompanied with a peculiar bistable phenomenon. The bistable phenomenon is induced by the initial packing config- uration of particles. When the packing is dense, the initial flux is small and will induce a dense flow. When the packing is loose, the initial flux is large and will induce a di- lute flow. The fabric network of granulax packing is analyzed from a complex network perspective. The degree distribution shows quantitatively different characteristics for the configurations. A two-dimensional (2D) packing clustering coefficient is defined to better quantify the fabric network.  相似文献   

4.
A new analytical model was developed to predict the gravity wave drag (GWD) induced by an isolated 3-dimensional mountain, over which a stratified, non-rotating non-Boussinesq sheared flow is impinged. The model is confined to small amplitude motion and assumes the ambient velocity varying slowly with height. The modified Taylor-Goldstein equation with variable coefficients is solved with a Wentzel-Kramers-Brillouin (WKB) approximation, formally valid at high Richardson numbers. With this WKB solution, generic formulae of second order accuracy, for the GWD and surface pressure perturbation (both for hydrostatic and non-hydrostatic flow) are presented, enabling a rigorous treatment on the effects by vertical variations in wind profiles. In an ideal test to the circular bell-shaped mountain, it was found that when the wind is linearly sheared, that the GWD decreases as the Richardson number decreases. However, the GWD for a forward sheared wind (wind increases with height) decreases always faster than that for the backward sheared wind (wind deceases with height). This difference is evident whenever the model is hydrostatic or not.  相似文献   

5.
When Bingham fluid is in motion, plugged flow often occurs at places far from theboundary walls. As there is not a decisive formula of constitutive relation for plugged flow,in some problems the solutions obtained may be indefinite. In this paper, annular flow andpipe flow are discussed,and unique solution is obtained in each case by utilizing the analyticproperty of shear stress. The solutions are identical in form with the commonly usedformula for the pressure drop of mud flow in petroleum engineering.  相似文献   

6.
This paper discusses pressure variation on a wall during the process of liquid flow and droplet formation in a T-junction microchannel. Relevant pressure in the chan-nel, deformation of the elastic wall, and responses of the droplet generation are analyzed using a numerical method. The pressure difference between the continuous and dis-persed phases can indicate the droplet-generation period. The pressure along the channel of the droplet flow is affected by the position of droplets, droplet-generation period, and droplet escape from the outlet. The varying pressures along the channel cause a nonuniform deformation of the wall when they are elastic. The deformation is a vibration and has the same period as the droplet generation arising from the process of droplet formation.  相似文献   

7.
According to the behaviors of a bubble in the ship wake flow,the numerical simulation is divided into two stages,quasi-spherical motion and non-spherical motion,based on whether the bubble is captured by the vortex or not.The one-way coupled particle tracking method(PTM) and the boundary element method(BEM) are adopted to simulate these two stages,respectively.Meanwhile,the initial condition of the second stage is taken as the output of the first one,and the entire simulation is connected and completed.Based on the numerical results and the published experimental data,the cavitation inception is studied,and the wake bubble is tracked.Besides,the split of the bubble captured by the vortex and the following sub-bubbles are simulated,including motion,deformation,and collapse.The results provide some insights into the control on wake bubbles and optimization of the wake flow.  相似文献   

8.
The stress distributions of granular flow in a cylindrical hopper with fiat bottom are investigated by means of a combined approach of discrete element method (DEM) and averaging method. The filling and discharge of the hopper flow are first simulated at a particle level by means of a modified DEM. The results are then used to determine the velocity and stress profiles of the hopper flow by means of an averaging method. The analysis is focused on a central section plane of the hopper due to the relatively perfect axial symmetry. The velocity profiles are illustrated to be consistent with those obtained by the previous experiments, confirming the validity of the proposed approach. The distributions of four components of the planar stress tensor at different heights are quantified. It is shown that the vertical normal stress increases with increasing the height near the central axis, the horizontal normal stress varies more slowly at a higher level and is almost constant when the height is equal to or greater than about 12 particle diameter, and the magnitudes of two shear stresses are equal at the central zone of the hopper but not so at the points near the walls. The dependence of stress distributions on the wall mechanical properties such as sliding resistance and rolling resistance is also discussed.  相似文献   

9.
The correlation problem between the blood flow and the motion of vessel wall in the mammalian circulatory system is discussed in this paper. Supposing the blood flow is under the stable oscillatory condition, a set of formulas for velocity distribution, pressure distribution, displacement of vessel wall and constraining stress are obtained. Kuchar’s formulas are extended from steady flow to unsteady oscillatory flow by means of the formulas obtained in this paper. The problem of elasticity effect of vessel wall is also discussed.  相似文献   

10.
This paper presents an analytical solution to the unsteady flow of the second-order non-Newtonian fluids by the use of intergral transformation method.Based on the numerical results,the effect of non-Newtonian coefficient Hc and other parameters on the flow are analysed.It is shown that the annular flow has a shorter characteristic time than the general pipe flow while the correspondent velocity,average velocity have a(?)aller value for a given Hc.Else,when radii ratio keeps unchanged,the shear stress of inner wall of annular flow will change with the inner radius compared with the general pipe flow and is always smaller than that of the outer wall.  相似文献   

11.
Deformation of an Oldroyd B drop in a Newtonian matrix under steady shear is simulated using a front tracking finite difference method for varying viscosity ratio. For drop viscosity lower than that of the matrix, the long-time steady deformation behavior is similar to that of the viscosity matched system—the drop shows reduced deformation with increasing Deborah number due to the increased inhibiting viscoelastic normal stress inside the drop. However for higher viscosity ratio systems, the drop response is non-monotonic—the steady drop deformation first decreases with increasing Deborah number but above a critical Deborah number, it increases with further increase in Deborah number, reaching higher than the viscous case value for some viscosity ratios. We explain the increase in deformation with Deborah number by noting that at higher viscosity ratios, strain rate inside the drop is reduced, thereby reducing the inhibiting viscoelastic stress. Furthermore, similar to the viscosity matched system, the drop inclination angle increases with increasing Deborah number. A drop aligned more with the maximum stretching axis at 45 degree of the imposed shear, experiences increased viscous stretching. With increased ratio of polymeric viscosity to total drop viscosity, the drop deformation decreases and the inclination angle increases. Our simulation results compare favorably with a number of experimental and computational results from other researchers.  相似文献   

12.
The development of a theoretical model for the prediction of velocity and pressure drop for the flow of a viscous power law fluid through a bed packed with uniform spherical particles is presented. The model is developed by volume averaging the equation of motion. A porous microstructure model based on a cell model is used. Numerical solution of the resulting equation is effected using a penalty Galerkin finite element method. Experimental pressure drop values for dilute solutions of carboxymethylcellulose flowing in narrow tubes packed with uniformly sized spherical particles are compared to theoretical predictions over a range of operating conditions. Overall agreement between experimental and theoretical values is within 15%. The extra pressure drop due to the presence of the wall is incorporated directly into the model through the application of the no-slip boundary condition at the container wall. The extra pressure drop reaches a maximum of about 10% of the bed pressure drop without wall effect. The wall effect increases as the ratio of tube diameter to particle diameter decreases, as the Reynolds number decreases and as the power law index increases.  相似文献   

13.
A. Ishak  R. Nazar  I. Pop 《Meccanica》2006,41(5):509-518
An analysis is made for the steady mixed convection boundary layer flow near the two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in its own plane. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation-point. Two equal and opposite forces are impulsively applied along the x-axis so that the wall is stretched, keeping the origin fixed in a viscous fluid of constant ambient temperature. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a very efficient numerical scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. It is observed that, for assisting flow, both the skin friction coefficient and the local Nusselt number increase as the buoyancy parameter increases, while only the local Nusselt number increases but the skin friction coefficient decreases as the Prandtl number increases. For opposing flow, both the skin friction coefficient and the local Nusselt number decrease as the buoyancy parameter increases, but both increase as Pr increases. Comparison with known results is excellent.  相似文献   

14.
The effect of an externally imposed axial temperature gradient on the mobility and deformation of a drop in an otherwise stagnant liquid within an insulated cylindrical tube is investigated. In the absence of bulk transport of momentum and energy, the boundary integral technique is used to obtain the flow and temperature fields inside and outside the deformable drop. The steady drop shapes and the corresponding migration velocities are examined over a wide range of the dimensionless parameters. The steady drop shape is nearly spherical for dimensionless drop sizes <0.5, but becomes slightly elongated in the axial direction for drop sizes comparable to tube diameter. The adverse effect of drop deformation on the effective temperature gradient driving the motion is slightly more pronounced than its favorable effect of reducing drag, thereby leading to a slight reduction in drop mobility with increasing drop deformation. Increasing the viscosity ratio reduces drop deformation and leads to a slight enhancement in the relative mobility (with respect to free thermocapillary motion) of confined drops. When the drop fluid has a lower thermal conductivity than the exterior phase, the presence of the thermally-insulating wall increases the thermal driving force for drop motion (compared to that for the same drop in unbounded domain) by causing more pronounced bending of the isotherms toward the drop. However, the favorable thermal effect of the confining wall is overwhelmed by its retarding hydrodynamic effect, causing the confined drop to always move slower than its unbounded counterpart regardless of the value of the thermal conductivity ratio.  相似文献   

15.
The non-Newtonian blood flow, together with magnetic particles in a stenosed artery, is studied using a magneto-hydrodynamic approach. The wall slip condition is also considered. Approximate solutions are obtained in series forms under the assumption that the Womersley frequency parameter has small values. Using an integral transform method, analytical solutions for any values of the Womersley parameter are obtained.Numerical simulations are performed using MATHCAD to study the influence of stenosis and magnetic field on the flow parameters. When entering the stenosed area, blood velocity increases slightly, but increases considerably and reaches its maximum value in the stenosis throat. It is concluded that the magnitude of axial velocity varies considerably when the applied magnetic field is strong. The magnitude of maximum fluid velocity is high in the case of weak magnetic fields. This is due to the Lorentz's force that opposes motion of an electrically conducting fluid. The effect of externally transverse magnetic field is to decelerate the flow of blood. The shear stress consistently decreases in the presence of a magnetic field with increasing intensity.  相似文献   

16.
郑金城  雷敏  彭刚  王乾峰 《实验力学》2013,28(6):732-740
利用三峡大学自行研制的大型多功能三轴材料试验机,完成了4种侧应力等级和3个数量级加载速率的C30混凝土立方体试件双向受压试验,系统地探讨了不同侧应力和不同加载速率下混凝土的强度特性及变形特性。研究表明,侧应力和应变速率都能提高混凝土的应变峰值,但侧应力对混凝土的应变峰值的影响较应变速率的影响大;随着侧应力的增加,混凝土的率敏感性逐渐降低;在有侧应力的情况下,随应变速率的增加,混凝土弹性模量变化逐渐减小;随应变速率的增加,应力应变曲线上升段更加陡峭,曲线更加饱满,混凝土剩余强度越来越高;双轴受压情况下,混凝土的应力应变曲线下降段趋势比无侧应力状态下较平缓,随侧应力的增加下降段曲线越来越平缓,混凝土的应力应变曲线更加饱满,峰值点无明显尖峰出现,混凝土剩余强度越来越高。  相似文献   

17.
The pulsatile flow of a two-phase model for blood flow through axisymmetric and asymmetric stenosed narrow arteries is analyzed, treating blood as a two-phase model with the suspension of all the erythrocytes in the core region as the Herschel-Bulkley material and plasma in the peripheral layer as the Newtonian fluid. The perturbation method is applied to solve the resulting non-linear implicit system of partial differential equations. The expressions for various flow quantities are obtained. It is found that the pressure drop, plug core radius, wall shear stress increase as the yield stress or stenosis height increases. It is noted that the velocity increases, longitudinal impedance decreases as the amplitude increases. For asymmetric stenosis, the wall shear stress increases non-linearly with the increase of the axial distance. The estimates of the increase in longitudinal impedance to flow of the two-phase Herschel-Bulkley material are significantly lower than those of the single-phase Herschel-Bulkley material. The results show the advantages of two-phase flow over single-phase flow in small diameter arteries with stenosis.  相似文献   

18.
We give two fundamental solutions for the motion of a point vortex near a flexible wall, up to first order in wall deflection, using computational methods. For a point vortex near an infinite horizontal wall, the deformation of the wall intensifies the flow at the wall near the vortex, and increases the speed of the vortex. Near a circular wall there is a strong mutual amplification of the deflection of the wall and the pressure force induced by the deflection, as the point vortex approaches the wall. The total force on the wall diverges as the inverse cube of the distance to the point vortex, and the induced speed of the point vortex diverges as the inverse fourth power of distance to the wall.  相似文献   

19.
In the present paper, a multi-linearity method is used to address the nonlinear slip control equation for the hydrodynamic analysis of a two-dimensional (2-D) slip gap flow. Numerical analysis of a finite length slider bearing with wall slip shows that the surface limiting shear stress exerts complicated influences on the hydrodynamic behavior of the gap flow. If the slip occurs at either the stationary surface or the moving surface (especially at the stationary surface), there is a transition point in the initial limiting shear stress for the proportional coefficient to affect the hydrodynamic load support in two opposite ways: it increases the hydrodynamic load support at higher initial limiting shear stresses, but decreases the hydrodynamic load support at lower initial limiting shear stresses. If the slip occurs at the moving surface only, no fluid pressure is generated in the case of null initial limiting shear stress. If the slip occurs at both the surfaces with the same slip property, the hydrodynamic load support goes off after a critical sliding speed is reached. A small initial limiting shear stress and a small proportionality coefficient always give rise to a low friction drag. The project supported by the National Natural Science Foundation of China (10421002, 10332010), the National Basic Research Program of China (2006CB601205), and the Science Research Foundation of Liaoning Province (20052178). The English text was polished by Yunming Chen.  相似文献   

20.
In this paper, numerical calculations have been performed to analyse the influence of the orbital motion of an inner cylinder on annular flow and the forces exerted by the fluid on the inner cylinder when it is rotating eccentrically. The flow considered is fully developed laminar flow driven by axial pressure gradient. It is shown that the drag of the annular flow decreases initially and then increases with the enhancement of orbital motion, when it has the same direction as the inner cylinder rotation. If the eccentricity and rotation speed of the inner cylinder keep unchanged (with respect to the absolute frame of reference), and the orbital motion is strong enough that the azimuthal component (with respect to the orbit of the orbital motion) of the flow‐induced force on the inner cylinder goes to zero, the flow drag nearly reaches its minimum value. When only an external torque is imposed to drive the eccentric rotation of the inner cylinder, orbital motion may occur and, in general, has the same direction as the inner cylinder rotation. Under this condition, whether the inner cylinder can have a steady motion state with force equilibrium, and even what type of motion state it can have, is related to the linear density of the inner cylinder. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号