首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper we present an error indicator for the Element Free Galerkin (EFG) method, whose evaluation is computationally so simple that it can be readily implemented in existing EFG codes. The error indicator works very well in all numerical examples for 2-D potential and elasticity problems that are presented here, for regular and irregular grid of nodes. Moreover, it was demonstrated that this method is very simple in terms of economy and gives a good performance. The results show the error in EFG approximation may be estimated via the error indicator described in this paper. The indicator allows the global energy norm error to be estimated and also gives a good evaluation of local errors. It can thus be combined with a full adaptive process of refinement or, more simply, provide guidance for cloud of points redesign.  相似文献   

2.
An improved formulation of the Element Free Galerkin (EFG) method is presented in this paper. In the Element Free Galerkin method, enforcement of essential boundary conditions is awkward as the approximations do not satisfy the Kronecker delta condition. A method of generating admissible approximations to the essential boundary conditions is given, using a constrained variational principle with a penalty function. Several examples of Laplace equation are solved and compared with analytical solutions and flux Lagrange multipliers, to demonstrate the performance of the method. A parametric study comparing three different weight functions is made. A guide on the EFG/penalisation method is given, considering the possibility of using irregular grids with a variable domain of influence for each point.  相似文献   

3.
自适应一致性高阶无单元伽辽金法   总被引:5,自引:4,他引:1  
近来提出的一致性高阶无单元伽辽金法通过导数修正技术大幅度减少了所需积分点数目,并能够精确地通过线性和二次分片试验,显著改善标准无单元伽辽金法的计算效率、精度和收敛性.本文在此基础之上,充分利用无单元法易于在局部区域添加节点的优势,发展了一致性高阶无单元伽辽金法的h型自适应分析方法.根据应变能密度梯度该方法自适应地确定需节点加密的区域,基于背景积分网格的局部多层细化要求生成新的计算节点,同时考虑了节点分布由密到疏渐进过渡的情形.采用相邻两次计算的应变能的相对误差作为自适应过程的停止准则,将所发展自适应无网格法应用于由几何外形、边界外载和体力等因素造成的应力集中问题的计算分析.数值结果表明,所发展方法能够自适应地对高应力梯度区域进行节点加密,自动给出合理的计算节点分布.与已有的标准无网格法的自适应分析相比,所发展方法在计算效率、精度和应力场光滑性等方面均展现出显著优势.与采用节点均匀分布的一致性高阶无单元伽辽金法相比,它大幅度地减少了计算节点数目,有效提高了一致性高阶无单元伽辽金法在分析应力集中等存在局部高梯度问题时的计算效率和求解精度.  相似文献   

4.
无单元伽辽金法需要在背景网格上积分,计算量大.节点积分无单元伽辽金法把对求解域的积分转化为对节点的求和,效率高,但因零能模态不受控制而会产生不稳定现象,需要采取一定的稳定化方案.本文采用应力点思想,通过Newtor-Cotes法计算积分,建立了质点积分无单元伽辽金法,并通过小变形弹性静力学问题说明了该方法具有良好的稳定性,且计算效率远高于无单元伽辽金法.最后本文将质点积分无单元伽辽金法成功地应用于三维金属挤压成型过程的数值模拟,显示了该方法在分析此类问题时的优势和潜力.  相似文献   

5.
流动问题无网格Galerkin方法的稳定化方案研究   总被引:1,自引:1,他引:0  
直接运用无网格Galerkin方法求解对流占优的非线性对流扩散方程及纯对流方程,会出现数值伪振荡现象。本文基于无网格Galerkin方法,构造了MFSUPG(Meshfree Streamline Upwind Petrov-Galerkin),MF-GLS(Meshfree Galerkin Least-Square),MFSGS(Meshfree Sub-Grid Scale)及MFLS(Meshfree Least-Square)四种稳定化方案。数值实验表明:四种稳定化方案中,MFLS的通用性最强。耦合MFLS的无网格Galerkin方法能很好地求解对流占优的非线性对流扩散方程及纯对流方程,具有计算精度高、稳定性好、前后处理方便、算法实施简单的优点,并能捕捉解的大梯度变化。  相似文献   

6.
In the recent decade, the meshless methods have been handled for solving most of PDEs due to easiness of the meshless methods. One of the popular meshless methods is the element-free Galerkin (EFG) method that was first proposed for solving some problems in the solid mechanics. The test and trial functions of the EFG are based on the special basis. Recently, some modifications have been developed to improve the EFG method. One of these improvements is the variational multiscale EFG procedure. In the current article, the shape functions of interpolation moving least squares approximation have been applied to the variational multiscale EFG technique for solving the incompressible magnetohydrodynamics flow. In order to reduce the elapsed CPU time of simulation, we employ a reduced-order model based on the proper orthogonal decomposition technique. The current combination can be referred to as the reduced-order variational multiscale EFG technique. To illustrate the reduction in CPU time used as well as the efficiency of the proposed method, we applied it for the two-dimensional cases.  相似文献   

7.
有别于有限元法,无网格法采用基于点的近似,可彻底或部分地去除网格(只保留积分所需的背景网格),在保证计算精度同时降低计算难度。无网格伽辽金法(Element Free Galerkin method, EFG)是一种基于移 动最小二乘近似(Moving Least-Squares, MLS)的全局弱式无网格法,广泛应用于计算力学等领域,该方法的一个缺点是:计算过程中产生的系数矩阵含有的非零元数量比有限元法多,即使处理中等规模模型时,也要求计算机有很大的存储空间,并且计算时间长。波前法在有限元法中已有很成熟的应用,但至今没有应用于无网格方法。本文介绍了波前法在无网格伽辽金法中的应用方法,编写了相应的计算程序,并以弹性力学为例做了验算。  相似文献   

8.
In this work an h-adaptive Modified Element-Free Galerkin (MEFG) method is investigated. The proposed error estimator is based on a recovery by equilibrium of nodal patches where a recovered stress field is obtained by a moving least square approximation. The procedure generates a smooth recovered stress field that is not only more accurate then the approximate solution but also free of spurious oscillations, normally seen in EFG methods at regions with high gradient stresses or discontinuities.The MEFG method combines conventional EFG with extended partition of unity finite element (EPUFE) methods in order to create global shape functions that allow a direct imposition of the essential boundary conditions.The re-meshing of the integration mesh is based on the homogeneous error distribution criterion and upon a given prescribed admissible error. Some examples are presented, considering a plane stress assumption, which shows the performance of the proposed methodology.  相似文献   

9.
One of major difficulties in the implementation of meshfree methods using the moving least square (MLS) approximation, such as element-free Galerkin method (EFG), is the imposition of essential boundary conditions as the approximations do not pass through the nodal parameter values. Another class of meshfree methods based on the radial basis point interpolation can satisfy the essential boundary conditions exactly since its approximation function passes through each node in an influence domain and thus its shape functions possess the properties of delta function. In this paper, a coupled element-free Galerkin(EFG)-radial point interpolation method (RPIM) is proposed to enhance their advantages and avoid their disadvantages. Discretized equations of equilibrium are obtained in the RPIM region and the EFG region, respectively. Then a collocation approach is introduced to couple the RPIM and the EFG method. This method satisfies the linear consistency exactly and can maintain the stiffness matrix symmetric. Numerical tests show that this method gives reasonably accurate results consistent with the theory.  相似文献   

10.
采用无单元伽辽金法求解弹塑性大变形问题。充分利用无单元法易于建立高阶近似函数的优点,位移采用二阶移动最小二乘近似。在更新拉格朗日方法的框架下,通过对控制方程弱形式的线性化建立了内力率的表达式,并区分为材料和几何两部分。采用Hughes-Winget算法更新应力,建立了Newton-Raphson迭代求解所需的一致切线刚度阵。刚度阵的数值积分采用近来针对小变形分析建立的二阶一致三点积分格式QC3(Quadratically Consistent 3-point integration scheme)。数值结果证明了本文方法分析弹塑性大变形问题的有效性和优越性。  相似文献   

11.
采用无单元伽辽金法(EFG)对弹塑性体脆性断裂的相场模型进行了数值实现。利用无单元法便于构建高阶近似函数的优势,位移和相场均采用二阶移动最小二乘(MLS)近似。刚度阵的数值积分采用更为高效的二阶一致三点积分格式QC3(Quadratically Consistent 3-point integration scheme)。本构算法采用Newton-Raphson迭代和弹塑性一致性切线模量。数值结果表明了本文方法模拟弹塑性体脆性断裂的有效性。  相似文献   

12.
用Voronoi图进行新型自然邻居插值的几何学方法与特性   总被引:2,自引:0,他引:2  
新的基于Voronoi图的Natural Neighbour插值是自然单元法的数学基础,也是一种新型的几何插值方法,具有与其他传统常用插值不同的构造方法,并表现出一定的优越性。本文介绍了基于Natural Noighbour关系的Sibson插值和non-Sibsonian插值,并与有限元法和无单元法所用的插值方法,就离散插值方案和网格总体特性、形函数支撑域、本征边界条件、空间维数扩展与计算工作量等诸问题进行了比较分析。  相似文献   

13.
An Element Free Galerkin (EFG) method based formulation for steady dynamic crack growth in elastic–plastic materials is developed. A domain convecting parallel to the steadily moving crack tip is employed. The EFG methodology eliminates the stringent mesh requirements of the Finite Element Method (FEM) for such problems. Both rate-independent materials and rate-dependent materials are considered. The material is characterized by von Mises yielding condition and an associated flow rule. For rate-independent materials, both the influence of crack speeds and that of strain hardening on the mechanics of steady dynamic crack growth are investigated. For rate-dependent materials, only a non-hardening material is considered with emphasis on determining the influence of viscous properties of materials and crack speeds. The influence of strain hardening on steady dynamic crack growth shows the same trends as for steady quasi-static crack growth. The simplifications used in the literature in deriving analytical solutions for high strain-rate crack growth have been examined thoroughly using the numerical results.  相似文献   

14.
Steady-state, laminar flow of an incompressible fluid through prismatic tubes of irregular but constant cross-section is investigated. Several approximations for the hydraulic conductance (Saint-Venant, Aissen, hydraulic radius), some of which were originally proposed for the mathematically analogous problem of torsion of a prismatic elastic bar, are examined and tested for regular geometric shapes for which analytical solutions exist. For such shapes, the Saint-Venant and Aissen approximations are typically within 15% of the exact conductance, whereas the hydraulic radius approximation may be in error by as much as 50%. Conformal mapping and the boundary element method are then used to study the hydraulic conductance of sandstone pores from SEM images of Berea and Massilon sandstone. For these irregular shapes, the hydraulic radius approximation is much more accurate than either the Saint-Venant or Aissen approximation. Moreover, the errors in the hydraulic radius approximation may be of either sign, and thereby partially cancel out when large numbers of pores are considered, whereas the other two methods tend always to overestimate the hydraulic conductance of rock pores.  相似文献   

15.
We consider point clouds obtained as random samples of a measure on a Euclidean domain. A graph representing the point cloud is obtained by assigning weights to edges based on the distance between the points they connect. Our goal is to develop mathematical tools needed to study the consistency, as the number of available data points increases, of graph-based machine learning algorithms for tasks such as clustering. In particular, we study when the cut capacity, and more generally total variation, on these graphs is a good approximation of the perimeter (total variation) in the continuum setting. We address this question in the setting of Γ-convergence. We obtain almost optimal conditions on the scaling, as the number of points increases, of the size of the neighborhood over which the points are connected by an edge for the Γ-convergence to hold. Taking of the limit is enabled by a transportation based metric which allows us to suitably compare functionals defined on different point clouds.  相似文献   

16.
本文给出了用有限域法进行了和学应力分析的一般原理,并与目前广泛采用的有限元不做了比较。文中的研究表明:有限域法与有限元法极为相似,前者使用单位位移加权,后者从虚位移原理出发;两种方法的实施过程也有共同点,它们都进行网络部分及逼近。  相似文献   

17.
A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta function property. With the interpolating GMLS (IGMLS) shape function, an improved element-free Galerkin (EFG) method is proposed for the structural dynamic analysis. Compared with the conventional EFG method, the obvious advantage of the proposed method is that the essential boundary conditions including both displacements and derivatives can be imposed by the straightforward way. Meanwhile, it can greatly improve the ill-condition feature of the standard GMLS approximation, and provide good accuracy at low cost. The dynamic analyses of the Euler beam and Kirchhoff plate are performed to demonstrate the feasibility and effectiveness of the improved method. The comparison between the numerical results of the conventional method and the improved method shows that the proposed method has better stability, higher accuracy, and less time consumption.  相似文献   

18.
When solving unsteady computational fluid dynamics problems in aerodynamics with a gridless method, a cloud of points is usually required to be regenerated due to its accommodation to moving boundaries. In order to handle this problem conveniently, a fast dynamic cloud method based on Delaunay graph mapping strategy is proposed in this paper. A dynamic cloud method makes use of algebraic mapping principles and therefore points can be accurately redistributed in the flow field without any iteration. In this way, the structure of the gridless clouds is not necessarily changed so that the clouds regeneration can be avoided successfully. The spatial derivatives of the mathematical modeling of the flow are directly determined by using weighted least‐squares method in each cloud of points, and then numerical fluxes can be obtained. A dual time‐stepping method is further implemented to advance the two‐dimensional Euler equations in arbitrary Lagarangian–Eulerian formulation in time. Finally, unsteady transonic flows over two different oscillating airfoils are simulated with the above method and results obtained are in good agreement with the experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
无网格Taylor最小二乘(MFLS)稳定化方案可有效地消除无网格Galerkin方法求解对流占优问题时产生的数值伪振荡,但当对流作用很强或纯对流时,它的求解效果不尽人意.因此,本文基于MFLS稳定化方案给出了一种自适应节点加密技术.该技术将无网格方法中背景积分单元作为自适应节点加密时物理量梯度指标的控制单元,并计算该控制单元上的物理量梯度指标;然后将其与给定的物理量梯度指标限进行比较,标识出大梯度区域从而进行自适应节点加密.数值实验表明,当求解对流作用很强的问题或纯对流问题时,这种基于MFLS稳定化方案的自适应节点加密技术不仅能有效地标示出数值振荡区域,而且可以彻底地消除数值伪振荡.  相似文献   

20.
In this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind‐biased scheme to solve the averaged Navier–Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号