首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
W.K.Wilson提出的高阶奇应变圆单元(SSC)把有限单元法和裂纹尖端附近的线弹性解析解结合起来,能有效地计算应力强度因子K_Ⅰ或K_Ⅱ。A.Holston Jr.进一步把对称和反对称位移叠加起来,用以计算复合型应力强度因子K_Ⅰ和K_Ⅱ。但他们在对称和反对称的位移函数中最多只取到4项。胡海昌建议取更多的项,以便把圆单元的半径  相似文献   

2.
本文用八节点等参数单元及其相应的奇性元,对两种双孔边裂纹平板的应力强度因子进行了计算。文中首先导出了平面复合型裂纹问题应力强度因子K_1、K_Ⅱ与等参奇性元节点位移间的关系式,作为用等参单元法推算应力强度因子的依据;然后,以单边裂纹板条为数值例子,对于等参奇性元尺寸的选择、裂纹段单元的配置以各种推算应力强度因子的方法与计算精度之间的关系进行了研究;最后,按一定精度的要求选择等参奇性元尺寸和裂纹段单元配置数,并以三种推算方法计算了两种双孔边裂纹平板的应力强度因子值。  相似文献   

3.
本文用文[1]的渐近分析方法,研究了考虑横向剪切变形的含裂纹平板的应力状态和应力强度因子的渐近解.在Reissner 平板理论的范围内,将含裂纹平板的应力状态分解为外场区(Ⅰ区)、Reissner 边界效应区(Ⅱ区)和裂纹尖端附近的奇异性区(Ⅲ区)等基本应力状态.用特征分析方法,导出了裂纹尖端区的应力——位移场;并提出了两种匹配展开的渐近求解方案:对载荷对称情况,用逐区匹配求解的方法求得了当小参数趋近于零时,含裂纹平板的应力场与位移场的渐近解和应力强度因子的一般积分表达式;并证明当小参数趋近于零时,对应于对称型(Ⅰ型)、反对称型(Ⅱ型)的应力强度因子K_1~R、K_2~R 和按古典平板理论提法下的应力强度因子K_1~c、K_2~c 之间存在简单的解析关系:K_1~R=((1 v)/(3 v))K_1~c,K_2~R=K_2~c在此基础上,讨论了含裂纹平板应力状态的特征和简化计算的方法.  相似文献   

4.
光弹性法确定应力强度因子的概念是 G.RIrwin 在1950年提出的,之后,特别是七十年代以来,许多人进行了这方面的研究,使这一方法由最初提出的求解二维静态 K_1的方法发展成为能解决三维静态 K_Ⅰ,K_Ⅱ,K_Ⅲ和二维动态 K_1,K_Ⅱ的方法。由于工程上常见的复杂三维裂纹体的应力强度因子用计算方法求解的困难,三维光弹性确定应力强度因子的方法就更具有吸引力了。然而,在用三维光弹模型确定工程结构的应力强度因子时还存在一个不符合相似准则的  相似文献   

5.
本文提出一种焦散测试系统,可以快速测取实际工程带裂纹板壳构件工作时的应力强度因子(K_Ⅰ,K_Ⅱ,K_Ⅲ).也可用于检测内部裂纹.  相似文献   

6.
本文提出一种焦散测试系统,可以快速测取实际工程带裂纹板壳构件工作时的应力强度因子(K_Ⅰ,K_Ⅱ,K_Ⅲ).也可用于检测内部裂纹.  相似文献   

7.
利用有限元特征分析法研究了平面各向异性材料裂纹端部的奇性应力指数以及应力场和位移场的角分布函数,以此构造了一个新的裂纹尖端单元。文中利用该单元建立了研究裂纹尖端奇性场的杂交应力模型,并结合Hellinger-Reissner变分原理导出应力杂交元方程,建立了求解平面各向异性材料裂纹尖端问题的杂交元计算模型。与四节点单元相结合,由此提出了一种新的求解应力强度因子的杂交元法。最后给出了在平面应力和平面应变下求解裂纹尖端奇性场的算例。算例表明,本文所述方法不仅精度高,而且适应性强。  相似文献   

8.
本文依据线弹性力学原理,用复变函数法求得在拉伸载荷下有限宽平板斜裂纹问题的K_Ⅰ和K_Ⅱ,并采用最大剪应变判据((d~2ε_θ)/(dθ~2)<0及(ε_θ)max与K_R相应),求得裂纹扩展角及当量Ⅰ型应力强度因子K_((?)q),再用能量准则求得失稳时的临界应力及裂纹容限.用此方法对几种初始角的几何斜裂纹有限宽平板的剩余强度作了计算,计算结果与有关文献中的数据和试验值相比,开裂角、临界应力及裂纹容限的误差均满足工程要求(2~7%).为进行二维薄壁结构的损伤容限设计,本文提供了剩余强度分析的工程方法及计算程序.  相似文献   

9.
本文介绍了三种形状的薄板材料点焊接头试件的拉伸试验及疲劳试验结果,探讨了改变薄板刚度对点焊接头静强度和疲劳寿命的影响。应用断裂力学理论及有限单元法计算焊核周围裂尖各点的应力强度因子K_Ⅰ、K_Ⅱ、K_Ⅲ及有效应力强度因子K_(φθmax),并用这些力学参数分析了不同刚度点焊接头试件的静强度和疲劳寿命。结果表明有效应力强度因子K_(φθmax)是评价拉剪点焊头疲劳寿命的有效力学参数。  相似文献   

10.
本文提出了用光弹数据确定应力强度因子K_Ⅲ的原理和方法,进行了带径向贯穿裂纹的纯扭轴的典型实验,得到K_Ⅲ实验值与精确计算解偏差在8%以内.  相似文献   

11.
焦散线法对双折射材料断裂性能的研究   总被引:1,自引:0,他引:1  
提出了双折射材料Ⅰ-Ⅱ混合型裂纹问题焦散线的形成原理,讨论了μ(=K_I/K_I)及光学各向异性系数ξ对焦散线形状及其几个特征量的影响,得到了双折射材料应力强度因子K_Ⅰ、K_Ⅱ的求法.以聚碳酸脂、环氧树脂为例,确定了它们在不同裂纹及不同载荷条件下的应力强度因子K_Ⅰ、K_Ⅱ.  相似文献   

12.
50年代后期Irwin提出了应力强度因子的概念。它是反映裂纹前缘应力场奇异性强度的一个参量。由于应力强度因子与裂纹扩展的应变能释放率是直接相关的,于是裂纹扩展的Griffith能量准则可用这个参量来表达,它们之间是等价的。也就是说,当张开型应力强度因子值K_I达到或者超过某一临界值K_(IC)时,裂纹将   相似文献   

13.
用分区混合有限元法计算应力强度因子,是分区混合能量原理实际应用的一个成功例子。该方法是把裂纹尖端附近作为Ⅰ区,采用一个应力奇异单元,应力场取裂纹尖端附近渐近解的第一项,以应力强度因子作未知量;把其余部分作为Ⅱ区,采用位移型常规单元,以结点位移作为未知量。  相似文献   

14.
疲劳裂纹扩展门槛值的研究进展   总被引:6,自引:0,他引:6  
Ⅰ.引言 大量的研究和疲劳裂纹扩展的试验表明,对于存在一定尺寸裂纹及缺陷的材料或构件,只有当裂纹尖端的应力强度因子达到或超过某一值时,裂纹才会在交变应力的作用下扩展。当裂纹尖端的应力强度因子小于这一值时,裂纹在交变应力作用下不发生扩展。这个应力强度因子值,就是界限应力强度因予幅值△K_(th),在疲劳研究中称为裂纹扩展的门槛值。 门槛值△K_(th)和疲劳裂纹扩展速率da/dN一样,是反映带裂纹或缺陷构件抗疲劳性能的  相似文献   

15.
基于扩展有限元的应力强度因子的位移外推法   总被引:1,自引:0,他引:1  
周博  薛世峰 《力学与实践》2017,39(4):371-378
针对平面裂纹问题,阐述了扩展有限元法的单元位移模式、推导了扩展有限元法的控制方程、介绍了特殊单元的数值积分技术.基于最小二乘法,建立了应力强度因子位移外推法的计算公式.利用MATLAB编写计算程序,对平面裂纹问题用扩展有限元法进行了计算.基于扩展有限元法的计算结果,分别利用位移外推法和相互作用积分法,对平面裂纹的应力强度因子进行了计算.计算结果表明,位移外推法比相互作用积分法能更方便和准确地计算平面裂纹的应力强度因子.  相似文献   

16.
1.引言用有限元法计算线弹性平面裂纹的应力强度因子时,往往在裂纹尖端采用奇应变圆单元或奇异性蜕化三角单元.因为这种奇异单元取得很小,为了防止所取的奇异应变的范围小于实际应有的范围,所以Lynn等人提出了所谓“过渡单元”.这就是在奇异单元周围布置一些8节点四边形等参数单元,并将其径向边中点作适当地偏离,从而使其单元中的应变也具有了r~(-1/2)专的项.这样一来,过渡单元弥补了由于人为地缩小奇异单元而造成的奇异应变范围太小的缺点.但是,Hussain等人进而证明了在这种过渡单元中,其应变除了有r~(-1/2)项外,还具有更强的r~(-1/2)项的奇异性,而  相似文献   

17.
应力强度因子是一个非常重要的参数,可以用来估算裂纹和切口的断裂.这篇论文提供了一种基于包含应力集中区域一定体积上的平均应变能密度,来确定应力强度因子的数值方法.对于I型或是II型裂纹的单一加载方式,应力强度因子都可以直接从一定体积上的平均应变能密度的表达式求得其解,但是对于I-II复合型裂纹,情况相对复杂.因此,作者们提出了利用围绕切口尖端一定体积上几组不同关于裂纹切口平分线对称区域上的平均应变能密度,来拟合复合加载下I型和II型应力强度因子的数值方法.为了验证,计算了I-II复合型裂纹的半圆形三点弯曲试样应力强度因子,并与文献中给出的应力强度因子进行了比较.结果表明,提出的数值方法可靠,为平均应变能密度准则的工程应用提供了一种新的思路.  相似文献   

18.
在K_Ⅰ和K_Ⅱ一起出现的情况下,裂纹尖端附近的光弹条纹环不总是对称的。本文把泰勒级数校正法用于混合型问题。这里确定应力强度因子的数据同时从始于裂纹尖端且与条纹环相交的几条射线上测取,并且使用最小二乘法来减少误差。  相似文献   

19.
本文讨论了V形切口问题的特征方程实根数与切口角度的关系;用边界配置法求得了四点剪切V形切口梁复合型应力强度因子的系列结果,并得到了计算K_Ⅰ,K_Ⅱ的经验公式;提出了用边界元法结合边界配置法以及用Muskhelishvili复应力函数法计算V形切口问题应力强度因子的方法,成功地计算了无限域中方孔凹角处的应力强度因子。  相似文献   

20.
计算应力强度因子的奇异等参单元   总被引:2,自引:0,他引:2  
用有限单元法计算裂纹顶端应力强度因子,来反映顶端应力的奇异性,导致于裂纹顶端特殊单元的应用发展很快。当反映裂纹顶端应力奇异性的奇异元与外围普通元混合运用时,奇异元有一最佳尺寸。对于不同的问题,最佳的单元尺寸也不同,这就是说,裂纹顶端单元的尺寸对计算结果有明显影响。如果裂纹顶端单元太大则计算误差大;如  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号