首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-dimensional (3D) spherical acoustic cloak is designed using an acoustic layered system, which can hide an object from the detection of acoustic wave in arbitrary direction. The cloak is constructed from multilayered concentric spherical shells filled with homogeneous isotropic materials. Based on spherical wave expansion method, we confirm that significant low-reflection, acoustic-shadow-reducing, and wavefront-bending effects in 3D space can be achieved by the proposed cloak. The angle distribution of the scattered wave is further evaluated by the far-field scattering pattern. In addition, the cloak is demonstrated to work efficiently in a wide bandwidth in which the cloaking efficiency decreases with increasing frequency. This study may be helpful to design high-performance 3D acoustic cloaks for broadband acoustic waves in all incidence directions.  相似文献   

2.
Recent research has suggested the possibility of creating acoustic cloaks using metamaterial layers to eliminate the acoustic field scattered from an elastic object. This paper explores the possibility of applying the scattering cancellation cloaking technique to acoustic waves and the use of this method to investigate its effectiveness in cloaking elastic and fluid spheres using only a single isotropic elastic layer. Parametric studies showing the influence of cloak stiffness and geometry on the frequency dependent scattering cross-section of spheres have been developed to explore the design space of the cloaking layer. This analysis shows that an appropriately designed single isotropic elastic cloaking layer can provide up to 30 dB of scattering reduction for ka values up to 1.6. This work also illustrates the importance of accounting for the elasticity of the object and the relevant limitations of simplistic quasi-static analyses proposed in recent papers.  相似文献   

3.
隐声衣结构设计和实验研究新进展   总被引:1,自引:1,他引:0       下载免费PDF全文
胡文林  杨军 《应用声学》2013,32(2):91-99
隐声衣是一项使物体隐藏于声场的新技术,与传统吸声方式相比,隐声衣消除回波时不会在目标背后留下声影区。隐声衣的物理实现是重点研究方向之一,利用具有特殊性质的材料或结构消除散射是获得隐声效果的主要途径。文章综述了隐声衣研究在结构设计和实验方面的几项新发展。包括基于超常材料的隐声衣、基于温度递度的隐声衣、应用反演设计方法的隐声衣、有源隐声衣等,主要介绍隐声衣机理和结构设计方面的新思想,以及新型人工材料和人工结构在隐声衣研究中的应用。  相似文献   

4.
In this review, a brief introduction is given to the development of acoustic superlens cloaks that allow the cloaked object to receive signals while its presence is not sensed by the surrounding, which can be regarded as “cloaking an acoustic sensor”. Remarkably, the designed cloak consists of single-negative materials with parameters independent of the background medium or the sensor system, which is proven to be a magnifying superlens. This has facilitated significantly the design and fabrication of acoustic cloaks that generally require double-negative materials with customized parameters. Such innovative design has then been simplified further as a multi-layered structure comprising of two alternately arranged complementary media with homogeneous isotropic single-negative materials. Based on this, a scattering analyses method is developed for the numerical simulation of such multi-layered cloak structures, which may serve as an efficient approach for the investigation on such devices.  相似文献   

5.
We present an impedance-matched reduced version of acoustic cloaking whose mass is in a reasonable range. A layered cloak design with isotropic material is also proposed for the reduced cloak. Numerical calculations from the transfer matrix methods show that the present layered cloak can reduce the scattering of an air cylinder substantially.  相似文献   

6.
沈惠杰  温激鸿  郁殿龙  蔡力  温熙森 《物理学报》2012,61(13):134303-134303
基于多层复合材料结构的二维声隐身斗篷设计思想, 利用主动隔膜声学空腔有效密度可以任意控制这一特性, 设计了主动声学超材料下的无限长圆柱声隐身斗篷. 给出了主动隔膜声学空腔单元的声电元件类比模拟电路图和具体的有效密度控制方法. 进行了主动声学超材料声隐身斗篷的结构建模, 并对平面入射波入射下此圆柱隐身斗篷周围声压分布场进行仿真计算. 结果表明, 平面波在一定频率范围内可以毫无阻碍地透过圆柱斗篷, 似乎不存在这种障碍物, 达到声隐身效果. 同时, 计算了主动声材料斗篷下总散射截面随频率变化曲线, 研究了此斗篷隐身效果随频率的变化特性. 本文从主动控制角度探讨实验实现隐身斗篷的技术问题, 有望给声隐身斗篷实验设计提供一条新的技术途径.  相似文献   

7.
Due to the correspondence of the acoustic equations to Maxwell??s equations of one polarization in two dimensions, we exploit theoretically the acoustic counterpart of the recently proposed remote invisibility cloak. The cloak consists of a circular cylindrical core with designed bulk moduli, and an ??anti-object?? embedded inside a shell with anisotropic mass densities. The material parameters of the cloaking shells are obtained by using the coordinate transformation method. The essence of the new design of cloaks relies on the ability that the cloaked object is no longer deafened by the cloaking shell, which is verified by both the far-field and near-field full-wave finite-element simulations in two dimensions.  相似文献   

8.
An imperfect multi-layered acoustic cloak is proposed for a two-dimensional cloaking zone based on feasible material properties. In this model, the matching of sound speed and acoustic impedance has been investigated, and the effects of material and geometric properties on the imperfect cloak have been studied for better design of the imperfect cloak. The imperfect cloak could be improved using appropriate changes in the design parameters. By increasing the thickness of the high density layer and with some changes in the sound speeds between the high density and the low density layers, the imperfect cloaking model showed better cloaking performance than Cummer–Schurig cloak. Also, present results show that the sound speed matching is more important for acoustic cloaking than the impedance matching. These results can be applied as a practical design guide for two-dimensional cloaks using multilayered structures composed of naturally existing materials.  相似文献   

9.
We propose a specific transformation in cloaking to make an acoustic sensor undetectable, in which the cloaking shell consists of complementary media with single-negative acoustic parameters instead of double-negative ones, and is proved to be a magnifying superlens. Moreover, the acoustical parameters of the cloak are completely independent of those of the host material as well as the cloaked object. This may significantly facilitate the experimental realization of acoustic cloaks and is of fundamental importance in a wide range of acoustics, optics, and engineering applications.  相似文献   

10.
张向东  陈虹  王磊  赵志高  赵爱国 《物理学报》2015,64(13):134303-134303
声学隐身衣物性参数分布的连续对制备造成了很大困难, 需要采用分层的方法进行近似. 研究分层对隐身衣性能的影响具有重要意义. 本文首先推导了圆柱形分层声学隐身衣散射声压场的理论解, 然后通过数值算例验证了理论推导的正确性, 最后针对层数、层厚分布对隐身衣性能的影响进行了计算研究. 结果表明, 选取恰当的层数和层厚分布可在不增加制备难度的同时改善隐身衣性能.  相似文献   

11.
高东宝  曾新吾 《物理学报》2012,61(18):184301-184301
基于等效介质理论, 提出了具有共焦层状结构的椭圆柱形声隐身衣设计方法. 理论分析与有限元数值模拟表明, 所设计隐身衣依然具有完美隐身衣典型特征, 可使刚性圆柱体散射场明显减小, 并且在隐身衣区域表现出波阵面弯曲的特性, 同时在隐身衣外部波阵面保持不变. 增加隐身衣离散层数可以拓宽其有效工作频带, 改善隐身效果. 由于是一种线变换隐身衣, 隐身效果受到了入射波方向的影响, 只有当入射波方向与椭圆长轴平行时效果最佳. 另外当椭圆柱焦距非常小的时候, 可近似认为是圆柱形隐身衣. 仿真实验结果证明了方法的正确性. 该研究为实现复杂形状声隐身衣提供了一种有效途径.  相似文献   

12.
The possibility of suppressing the scattering cross section of an object is subject to fundamental physical bounds imposed by causality and passivity. Global cloaking limitations have been recently derived, which imply that any linear, causal and passive cloak necessarily increases the global scattering, integrated over the whole electromagnetic spectrum, compared to the uncloaked object. Here, we expand on this topic, discussing in detail an interesting exception to this limit represented by cloaks with static diamagnetism. In this context, we explore the potential of superconducting materials to realize global and local reduction of the scattering cross section. The concepts of plasmonic and mantle cloaking are extended to superconductors, realizing strong and tunable invisibility, with some unique properties stemming from the peculiar electrodynamics of superconductors. We conclude by qualitatively discussing a possible method to derive more stringent local bounds on cloaking.  相似文献   

13.
蔡琛  袁樱  阚威威  杨京  邹欣晔 《中国物理 B》2016,25(12):124302-124302
In this paper, acoustic scattering from the system comprised of a cloaked object and the multilayer cloak with only one single pair of isotropic media is analyzed with a recursive numerical method. The designed acoustic parameters of the isotropic cloak media are assumed to be single-negative, and the resulting cloak can reduce acoustic scattering from an acoustic sensor while allowing it to receive external information. Several factors that may influence the performance of the cloak, including the number of layers and the acoustic dissipation of the medium are fully analyzed. Furthermore, the possibility of achieving acoustic invisibility with positive acoustic parameters is proposed by searching the optimum value in the parameter space and minimizing the scattering cross-section.  相似文献   

14.
A type of acoustic carpet cloak has been theoretically designed and numerically implemented in air using steel/air composites. By using the effective medium theory, the effective density and bulk modulus of the composite material are designed to agree with the spatially variant parameters calculated from the coordinate transformation approach. Great cloaking performance is achieved as an object is well hidden under a sound reflective surface in a wide frequency range. It has also been shown that sound can be effectively manipulated using the proposed composite materials because of its low complexity.  相似文献   

15.
Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely, serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Because of the nonresonant nature of the building elements, this low-loss (~6 dB/m) cylindrical cloak exhibits invisibility over a broad frequency range from 52 to 64?kHz. Furthermore, our experimental study indicates that this design approach should be scalable to different acoustic frequencies and offers the possibility for a variety of devices based on coordinate transformation.  相似文献   

16.
The paper presents an original boundary integral equation (BIE) formulation for the analysis of the acoustic cloaking of a scatterer. The advantage of such an approach is the lower computational burden, especially when the analysis of a large portion of the hosting domain is required. The partial differential equation governing the propagation inside the cloak is recast in the form of non-homogeneous wave equation, with field sources depending on the mechanical properties of the cloak. The boundary integral formulation is derived using the standard procedure. The boundary element method (BEM) is used to derive the matrix transfer function of the cloak. The latter is applied to the incident field at the cloak's outer boundary to obtain the total field at arbitrary locations in the host. The formulation is applied to the simple case of a radially symmetric cloak embedding a circular obstacle. Numerical results are presented for sound-hard and sound-soft obstacles, including a study of the cloaking efficiency as a function of the frequency.  相似文献   

17.
Here we show that floating objects in stratified fluids can be cloaked against broadband incident waves by properly architecting the bottom corrugations. The presented invisibility cloaking of gravity waves is achieved utilizing a nonlinear resonance concept that occurs between surface and internal waves mediated by the bottom topography. Our cloak bends wave rays from the surface into the body of the fluid. Wave rays then pass underneath the floating object and may be recovered back to the free surface at the downstream bearing no trace of diffraction or scattering. The cloak is the proper architecture of bottom corrugations only, and hence is surface noninvasive. The presented scheme is a nonlinear alternative to the transformation-based cloaking, but in the context of dispersive waves.  相似文献   

18.
《Physics letters. A》2019,383(19):2296-2301
With the advent of thermal metamaterials, many new thermal functionalities have been proposed, like thermal cloaking, concentrating, etc. However, these thermal functionalities are based on the transformation thermotics or scattering cancellation technique, which, derived from Fourier's law, cannot apply to the micro-/nanoscale counterparts. In this paper, we design a nanoscale thermal cloak based on a crystalline silicon (Si) membrane and investigate the in-plane phonon transport via non-equilibrium molecular dynamics (NEMD) simulation by in-situ tuning the thermal conductivity of the thermal cloak from crystalline Si to amorphous Si. The two-dimensional temperature profile is obtained, and the thermal cloaking effect is evaluated by the ratio of heat flux. By analyzing the phonon density of state (PDOS) and the mode participation ratio (MPR), the mechanism can be attributed to the phonon localization in the annealed cloaking region. The proposed nanoscale thermal cloak by in-situ tuned thermal conductivity, may trigger the development of nanoscale thermal functionalities and open avenues for and thermal management for nano-photonics and nano-electronics.  相似文献   

19.
Through acoustic scattering theory we derive the mass density and bulk modulus of a spherical shell that can eliminate scattering from an arbitrary object in the interior of the shell--in other words, a 3D acoustic cloaking shell. Calculations confirm that the pressure and velocity fields are smoothly bent and excluded from the central region as for previously reported electromagnetic cloaking shells. The shell requires an anisotropic mass density with principal axes in the spherical coordinate directions and a radially dependent bulk modulus. The existence of this 3D cloaking shell indicates that such reflectionless solutions may also exist for other wave systems that are not isomorphic with electromagnetics.  相似文献   

20.
In this paper, dispersive cloak design with broad bandwidth and minimal scattering cross section is proposed by appropriately selecting a radial permeability for each shell in a discretized reduced cloak. The dispersive medium is constructed by artificially varying the inner radius of the cloak with frequency, and this variation results into unique material properties at every frequency. The variation of inner radius of the cloak with frequency is artificial since the actual physical dimension of inner radius remains invariant. The relation between bandwidth and geometrical parameters of cloak is obtained by ensuring that transformation media must satisfy the condition that group velocity must remain less than the speed of light along every direction for a finite frequency range. The proposed cloak provides \(8.9\,\%\) bandwidth with respect to the center frequency for \(50\,\%\) reduction in total scattering cross section, and at the design frequency, the minimum scattering cross section obtained is \(0.266\). The proposed dispersive cloak design is verified by numerical full-wave simulations results which also confirm good cloaking performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号