首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An imperfect multi-layered acoustic cloak is proposed for a two-dimensional cloaking zone based on feasible material properties. In this model, the matching of sound speed and acoustic impedance has been investigated, and the effects of material and geometric properties on the imperfect cloak have been studied for better design of the imperfect cloak. The imperfect cloak could be improved using appropriate changes in the design parameters. By increasing the thickness of the high density layer and with some changes in the sound speeds between the high density and the low density layers, the imperfect cloaking model showed better cloaking performance than Cummer–Schurig cloak. Also, present results show that the sound speed matching is more important for acoustic cloaking than the impedance matching. These results can be applied as a practical design guide for two-dimensional cloaks using multilayered structures composed of naturally existing materials.  相似文献   

2.
隐声衣结构设计和实验研究新进展   总被引:1,自引:1,他引:0       下载免费PDF全文
胡文林  杨军 《应用声学》2013,32(2):91-99
隐声衣是一项使物体隐藏于声场的新技术,与传统吸声方式相比,隐声衣消除回波时不会在目标背后留下声影区。隐声衣的物理实现是重点研究方向之一,利用具有特殊性质的材料或结构消除散射是获得隐声效果的主要途径。文章综述了隐声衣研究在结构设计和实验方面的几项新发展。包括基于超常材料的隐声衣、基于温度递度的隐声衣、应用反演设计方法的隐声衣、有源隐声衣等,主要介绍隐声衣机理和结构设计方面的新思想,以及新型人工材料和人工结构在隐声衣研究中的应用。  相似文献   

3.
Based on the effective medium theory, we propose a practical implementation of a cylindrical acoustic cloak with a concentric alternating multilayered structure of homogeneous isotropic materials, which can perfectly mimic the ideal radius-dependent and anisotropic ordinary lens cloak. The proposal exhibits near-ideal cloaking performance such as low-scattering and shadow-reducing in a wide frequency range, thus it can hide an object from the detection of acoustic waves. The acoustic wave can pass through the cloaking shell with an unchanged wavefront shape, which endues the cloaked object with duplex communication ability. More simulations on the acoustic far-field scattering patterns and the total scattering cross-section are performed to investigate the layer number and the frequency dependence of the cloaking effect, and the results show that the thinner layers exhibit a better cloaking effect. The proposal may significantly facilitate the experimental demonstration of the acoustic cloak.  相似文献   

4.
Due to the correspondence of the acoustic equations to Maxwell??s equations of one polarization in two dimensions, we exploit theoretically the acoustic counterpart of the recently proposed remote invisibility cloak. The cloak consists of a circular cylindrical core with designed bulk moduli, and an ??anti-object?? embedded inside a shell with anisotropic mass densities. The material parameters of the cloaking shells are obtained by using the coordinate transformation method. The essence of the new design of cloaks relies on the ability that the cloaked object is no longer deafened by the cloaking shell, which is verified by both the far-field and near-field full-wave finite-element simulations in two dimensions.  相似文献   

5.
The methods for calculating acoustic cloaking that is implemented by the wave flow method are reviewed, and the efficiency of this technique for cloaking regions with symmetries of three types is analyzed. It is shown that the main problem in implementing acoustic cloaking is the formation of an anisotropic medium with inhomogeneous components of the density tensor and bulk modulus, which change in a wide range and have limiting values of ∞ or 0 at the cloaking-region boundaries. Some estimates are obtained, according to which a stratified medium composed of a sequence of layers with different densities and compressibilities appears to be more promising, because it (i) is more easy to implement and (ii) opens possibilities for broadband cloaking. Analysis of different versions of the cloaking-region symmetry revealed that, using a layered medium, one can implement efficient acoustic cloaking only in the case of a spherically symmetric region.  相似文献   

6.
Wei-Wei Kan 《中国物理 B》2022,31(8):84302-084302
The scattering behavior of an anisotropic acoustic medium is analyzed to reveal the possibility of routing acoustic signals through the anisotropic layers with no backscattering loss. The sound-transparent effect of such a medium is achieved by independently modulating the anisotropic effective acoustic parameters in a specific order, and is experimentally observed in a bending waveguide by arranging the subwavelength structures in the bending part according to transformation acoustics. With the properly designed filling structures, the original distorted acoustic field in the bending waveguide is restored as if the wave travels along a straight path. The transmitted acoustic signal is maintained nearly the same as the incident modulated Gaussian pulse. The proposed schemes and the supporting results could be instructive for further acoustic manipulations such as wave steering, cloaking and beam splitting.  相似文献   

7.
Recent research has suggested the possibility of creating acoustic cloaks using metamaterial layers to eliminate the acoustic field scattered from an elastic object. This paper explores the possibility of applying the scattering cancellation cloaking technique to acoustic waves and the use of this method to investigate its effectiveness in cloaking elastic and fluid spheres using only a single isotropic elastic layer. Parametric studies showing the influence of cloak stiffness and geometry on the frequency dependent scattering cross-section of spheres have been developed to explore the design space of the cloaking layer. This analysis shows that an appropriately designed single isotropic elastic cloaking layer can provide up to 30 dB of scattering reduction for ka values up to 1.6. This work also illustrates the importance of accounting for the elasticity of the object and the relevant limitations of simplistic quasi-static analyses proposed in recent papers.  相似文献   

8.
In this review, a brief introduction is given to the development of acoustic superlens cloaks that allow the cloaked object to receive signals while its presence is not sensed by the surrounding, which can be regarded as “cloaking an acoustic sensor”. Remarkably, the designed cloak consists of single-negative materials with parameters independent of the background medium or the sensor system, which is proven to be a magnifying superlens. This has facilitated significantly the design and fabrication of acoustic cloaks that generally require double-negative materials with customized parameters. Such innovative design has then been simplified further as a multi-layered structure comprising of two alternately arranged complementary media with homogeneous isotropic single-negative materials. Based on this, a scattering analyses method is developed for the numerical simulation of such multi-layered cloak structures, which may serve as an efficient approach for the investigation on such devices.  相似文献   

9.
Through acoustic scattering theory we derive the mass density and bulk modulus of a spherical shell that can eliminate scattering from an arbitrary object in the interior of the shell--in other words, a 3D acoustic cloaking shell. Calculations confirm that the pressure and velocity fields are smoothly bent and excluded from the central region as for previously reported electromagnetic cloaking shells. The shell requires an anisotropic mass density with principal axes in the spherical coordinate directions and a radially dependent bulk modulus. The existence of this 3D cloaking shell indicates that such reflectionless solutions may also exist for other wave systems that are not isomorphic with electromagnetics.  相似文献   

10.
A type of acoustic carpet cloak has been theoretically designed and numerically implemented in air using steel/air composites. By using the effective medium theory, the effective density and bulk modulus of the composite material are designed to agree with the spatially variant parameters calculated from the coordinate transformation approach. Great cloaking performance is achieved as an object is well hidden under a sound reflective surface in a wide frequency range. It has also been shown that sound can be effectively manipulated using the proposed composite materials because of its low complexity.  相似文献   

11.
A novel cloaking scheme to hide an object in a half space from electromagnetic (EM) detection without reflection is firstly presented. The proposed cloaking scheme contains a couple of matching strips, which consist of an isotropic material layer and an anisotropic UPML layer, located right under the bottom surface of a semi-cylindrical cloaking shell. Simple expressions for the material parameters of the cloaking scheme are derived. Numerical simulations are also performed, and a good cloaking effect is achieved. The cloaking scheme is effective to hide the local object with strong scattering characters placed on mobile carriers, such as the radar antenna system on an aircraft.1  相似文献   

12.
We present theoretical investigations and numerical simulations of one-dimensional (1-D) acoustic metamaterials that exhibit wide negative bulk modulus bands down to zero. The metamaterials consist of double or quadruple branch openings in a 1-D waveguide. A lumped model is developed for theoretical analysis and the bandwidths of negative bulk modulus for different structures are calculated and compared. As much as 100 % increase over the traditional single branch opening structure in bandwidth can be achieved. The proposed metamaterials can be utilized to further achieve double negativity, which could facilitate applications such as acoustic cloaking and superlensing.  相似文献   

13.
The propagation of acoustic waves is a fundamental topic in shallow ocean acoustics.We numerically demonstrate a three-dimensional zone of silence consisting of a circular tube with gradient index metamaterials attached to its rigid wall.The cloaking effect is verified by fine agreement with analytical calculations.  相似文献   

14.
沈惠杰  温激鸿  郁殿龙  蔡力  温熙森 《物理学报》2012,61(13):134303-134303
基于多层复合材料结构的二维声隐身斗篷设计思想, 利用主动隔膜声学空腔有效密度可以任意控制这一特性, 设计了主动声学超材料下的无限长圆柱声隐身斗篷. 给出了主动隔膜声学空腔单元的声电元件类比模拟电路图和具体的有效密度控制方法. 进行了主动声学超材料声隐身斗篷的结构建模, 并对平面入射波入射下此圆柱隐身斗篷周围声压分布场进行仿真计算. 结果表明, 平面波在一定频率范围内可以毫无阻碍地透过圆柱斗篷, 似乎不存在这种障碍物, 达到声隐身效果. 同时, 计算了主动声材料斗篷下总散射截面随频率变化曲线, 研究了此斗篷隐身效果随频率的变化特性. 本文从主动控制角度探讨实验实现隐身斗篷的技术问题, 有望给声隐身斗篷实验设计提供一条新的技术途径.  相似文献   

15.
《Physics letters. A》2020,384(7):126151
In this paper, we propose an ultra-thin acoustic metasurface constructed of multiply resonant units to manipulate reflected wavefront. As a counterpart to the Helmholtz resonator (with monopolar resonance) and membrane-type resonator (with dipolar resonance), the multiply resonator are used in metamaterials to induce strong quadrupolar resonance. Here we use the multiply resonator as a new kind of building blocks to make acoustic metasurfaces. The used multiply resonant unit is composed of solid materials, and the acoustic metasurface can work in a water background. We demonstrate that the proposed acoustic metasurface achieves good performance in anomalous reflection, focusing, and carpet cloaking. The thickness of the acoustic metasurface is about two orders of magnitude smaller than the acoustic wavelength in water. A design of unit group is further proposed to avoid the phase discretization becoming too fine in such a long-wavelength condition.  相似文献   

16.
We present an impedance-matched reduced version of acoustic cloaking whose mass is in a reasonable range. A layered cloak design with isotropic material is also proposed for the reduced cloak. Numerical calculations from the transfer matrix methods show that the present layered cloak can reduce the scattering of an air cylinder substantially.  相似文献   

17.
In this paper we present a rigorous derivation of the material parameters for both the cylinder and rectangle cloaking structures. Numerical results using these material parameters are presented to demonstrate the cloaking effect.  相似文献   

18.
A three-dimensional (3D) spherical acoustic cloak is designed using an acoustic layered system, which can hide an object from the detection of acoustic wave in arbitrary direction. The cloak is constructed from multilayered concentric spherical shells filled with homogeneous isotropic materials. Based on spherical wave expansion method, we confirm that significant low-reflection, acoustic-shadow-reducing, and wavefront-bending effects in 3D space can be achieved by the proposed cloak. The angle distribution of the scattered wave is further evaluated by the far-field scattering pattern. In addition, the cloak is demonstrated to work efficiently in a wide bandwidth in which the cloaking efficiency decreases with increasing frequency. This study may be helpful to design high-performance 3D acoustic cloaks for broadband acoustic waves in all incidence directions.  相似文献   

19.
The paper presents an original boundary integral equation (BIE) formulation for the analysis of the acoustic cloaking of a scatterer. The advantage of such an approach is the lower computational burden, especially when the analysis of a large portion of the hosting domain is required. The partial differential equation governing the propagation inside the cloak is recast in the form of non-homogeneous wave equation, with field sources depending on the mechanical properties of the cloak. The boundary integral formulation is derived using the standard procedure. The boundary element method (BEM) is used to derive the matrix transfer function of the cloak. The latter is applied to the incident field at the cloak's outer boundary to obtain the total field at arbitrary locations in the host. The formulation is applied to the simple case of a radially symmetric cloak embedding a circular obstacle. Numerical results are presented for sound-hard and sound-soft obstacles, including a study of the cloaking efficiency as a function of the frequency.  相似文献   

20.
张若洋  赵清  葛墨林 《中国物理 B》2016,25(8):84702-084702
We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid.The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach.The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation(or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号