首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
陈钢  赵国忠  顾元宪 《应用声学》2007,26(3):151-158
本文研究了小阻尼界面封闭空间低频声学有限元分析、灵敏度分析和优化设计问题。分别用模态法和直接法计算了封闭空间内声压级响应,并推导了声压级响应对声空间边界形状控制参数的灵敏度分析公式,在此基础上建立了小阻尼空间声学问题的优化模型,同时给出了优化求解算法,并在JIFEX软件中进行了程序实现。本文提出的灵敏度分析和优化设计方法可以使声场的边界布局更为合理,从而达到改进小阻尼界面封闭空间声学性能的目的。数值算例验证了本文提出的灵敏度分析和优化算法的有效性。  相似文献   

2.
A modeling method for the dynamic characteristics analysis of a slender acoustical cavity with impedance end conditions is established. In order to satisfy the continuity requirement at impedance ends for the first order differential of sound pressure, field function is constructed as the standard Fourier series supplemented by boundary smoothed auxiliary polynomials. System characteristic equation is derived by solving the governing differential equation and impedance acoustic boundary of slender acoustical cavity system simultaneously,relevant acoustical modal information is obtained via the state space solution procedure. In numerical simulation, various acoustic variables, such as acoustical modal frequency, sound pressure modal shape, sound pressure response and the particle velocity, are presented for the slender acoustical cavity system with different boundary conditions and compared with those results in the existing literature. The correctness and effectiveness of the proposed method are then fully validated.  相似文献   

3.
考虑任意阻抗壁面条件管腔结构声场特性分析   总被引:2,自引:1,他引:1       下载免费PDF全文
针对任意阻抗壁面条件一维管腔声学系统建模,对系统动力学特性进行预报。为了满足阻抗边界条件对声压一阶导数连续性要求,管腔声压函数通过在标准傅里叶级数端点位置引入边界光滑辅助多项式进行构建。结合壁面阻抗声学边界和管腔声学Helmholtz控制微分方程得到强形式标准特征值问题,获得相应的声学模态信息。在数值仿真中,通过算例给出各种边界条件下管腔声学模态频率、声压振型、声压和质点振速频率响应曲线,与现有文献中相关结果进行对比,充分验证了本文求解方法的正确性和有效性,证明该方法可对任意阻抗壁面条件管腔系统声学特性进行准确预报。  相似文献   

4.
Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-field acoustical holography(SONAH) and broadband acoustical holography from intensity measurements(BAHIM) to reconstruct the underwater cylindrical source field. First,the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary,and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal,and the measurement array can be smaller than the source,thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then,an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement,as well as the identification and localization of noise sources.  相似文献   

5.
Design sensitivity analysis for sequential structural-acoustic problems   总被引:1,自引:0,他引:1  
A design sensitivity analysis of a sequential structural-acoustic problem is presented in which structural and acoustic behaviors are de-coupled. A frequency-response analysis is used to obtain the dynamic behavior of an automotive structure, while the boundary element method is used to solve the pressure response of an interior, acoustic domain. For the purposes of design sensitivity analysis, a direct differentiation method and an adjoint variable method are presented. In the adjoint variable method, an adjoint load is obtained from the acoustic boundary element re-analysis, while the adjoint solution is calculated from the structural dynamic re-analysis. The evaluation of pressure sensitivity only involves a numerical integration process for the structural part. The proposed sensitivity results are compared to finite difference sensitivity results with excellent agreement.  相似文献   

6.
Shape design sensitivity analysis for the radiated noise from the thin-body   总被引:1,自引:0,他引:1  
Many industrial applications generally use thin-body structures in their design. To calculate the radiated noise from vibrated structure including thin bodies, the conventional boundary element method (BEM) using the Helmholtz integral equation is not an effective resolution. Thus, many researchers have studied to resolve the thin-body problem in various physical fields. No major study in the design sensitivity analysis (DSA) fields for thin-body acoustics, however, has been reported.A continuum-based shape DSA method is presented for the radiated noise from the thin-body. The normal derivative integral equation is employed as an analysis formulation. And, for the acoustic shape design sensitivity formulation, the equation is differentiated directly by using material derivative concept. To solve the normal derivative integral equation, the normal velocities on the surface should be calculated. In the acoustic shape sensitivity formulation, not only the normal velocities on the surface are required but also derivative coefficients of the normal velocities (structural shape design sensitivity) are also required as the input. Hence, the shape design sensitivity of structural velocities on the surface, with respect to the shape change, should be calculated. In this research, the structural shape design sensitivities are also obtained by using a continuum approach. And both a modified interpolation function and the Cauchy principle value are used to regularize the singularities generated from the acoustic shape design sensitivity formulation.A simple annular disk is considered as a numerical example to validate the accuracy and efficiency of the shape design sensitivity equations derived in this research. The commercial BEM code, SYSNOISE, is utilized to confirm the results of the developed in-house code based on a normal derivative integral equation. To validate the calculated design sensitivity results, central finite difference method (FDM) is employed. The error between FDM and the analytical result are less than 3%. This comparison demonstrates that the proposed design sensitivities of the radiated pressure are very accurate.  相似文献   

7.
This paper presents a different approach to solve the inverse acoustic problem. This problem is an "ill-posed" problem since the solution is very sensitive to measurement precision. A classical way to solve this problem consists in inversing a propagation operator which relates structure quantities (acoustic pressures or gradients) to near-field quantities (acoustic pressures or gradients). This can be achieved by using near-field acoustical holography (NAH) in separable coordinate systems. In order to overcome this limitation, the inverse boundary element method (IBEM) can be implemented to recover all acoustic quantities in a three-dimensional space and on an arbitrary three-dimensional source surface. In this paper, the data completion method (DCM) is developed: the acoustic gradients and pressures are known on a surface surrounding the source, but are unknown on its structure. The solution is given by the resolution of the Helmholtz formulation applied on the empty domain between the two boundaries made by the measurements quantities and the structure of the source. The conventional method applies directly the integral formulation for the empty domain. Another way of solving this Helmholtz formulation can be achieved by splitting it in two well-posed subproblems in a Steklov-Poincare?'s formulation. The data completion method allows one to solve the problem with acoustic perturbations due to sources on the exterior domain, or due to a confined domain, without altering the results.  相似文献   

8.
Hybrid near-field acoustic holography   总被引:7,自引:0,他引:7  
Hybrid near-field acoustical holography (NAH) is developed for reconstructing acoustic radiation from an arbitrary object in a cost-effective manner. This hybrid NAH is derived from a modified Helmholtz equation least squares (HELS) formula that expands the acoustic pressure in terms of outgoing and incoming waves. The expansion coefficients are determined by solving an overdetermined linear system of equations obtained by matching the assumed-form solution to measured acoustic pressures through the least squares. Measurements are taken over a conformal surface around a source at close range so that the evanescent waves can be captured. Next, the modified HELS is utilized to regenerate as much acoustic pressures on the conformal surface as necessary and take them as input to the Helmholtz integral formulation implemented numerically by boundary element method (BEM). The acoustic pressures and normal velocities on the source surface are reconstructed by using a modified Tikhnov regularization (TR) with its regularization parameter determined by generalized cross validation (GCV) method. Results demonstrate that this hybrid NAH combines the advantages of HELS and inverse BEM. This is because a majority of the input data are regenerated but not measured, thus the efficiency of reconstruction is greatly enhanced. Meanwhile, the accuracy of reconstruction is ensured by the Helmholtz integral theory and modified TR together with GCV method, provided that HELS converges fast enough on the measurement surface. Numerical examples of reconstructing acoustic quantities on the surface of a simplified engine block are demonstrated. [Work supported by NSF.]  相似文献   

9.
本文研究内容属于舰艇声兼容性技术研究的一部分。应用声学软件SYSNOISE计算了,声纳定向发射时某试验用声纳导流罩及尾部吸声障板的声场特性,同时进行相同工况的水下模型试验。计算结果与试验结果吻合良好,说明应用声学软件对声纳声场进行计算是一种可行的方法,有可能推广至其他的水下模型的声场计算。结果数据反映了吸声障板对声纳定向发射时声场的影响,为舰艇总体声纳导流罩内吸声障板的结构设计、声兼容设计提供依据。  相似文献   

10.
The objective of this paper is to present recent investigations in characteristics of the sound field generated by neurosurgical endoscopic ultrasonic probes (NEUPs) for minimally invasive surgery. The importance of this information has been investigated and discussed taking into account following facts: 1. According to the International Standard IEC 61847:1998 basic acoustical output characteristics of ultrasonic surgical equipment is declared for and measured in an acoustical free field. The standard generally treats the ultrasonic probe as an omnidirectional point source of the zero order (monopole source). 2. In real conditions, operations with NEUPs are performed within the acoustical near field. Having in mind that the cavitational and hydrodynamic effects are dominant, two theoretical boundary conditions can be present. The first one takes place when operations are performed near the "soft" acoustical boundary (tissue/air), and the second one is near the "rigid" acoustical boundary (tissue/bone). Reflections of sound waves from boundaries have influence on the characteristics of the ultrasonic probe (transducer) and on the sound field. In such cases spherical waves of the first and second order are generated. Directivity of sound sources takes shape in the far field and is easier to measure there. On the basis of measured directivity patterns, the influence of different operational conditions (immersion depth of the probe tip, boundary type, acoustical impedance of the medium etc.) on the radiated sound power and spatial distribution of the sound pressure can be estimated.  相似文献   

11.
In 1965, the Catholic Church liturgy changed to allow priests to face the congregation. Whereas Church tradition, teaching, and participation have been much discussed with respect to priest orientation at Mass, the acoustical changes in this regard have not yet been examined scientifically. To discuss acoustic desired within churches, it is necessary to know the acoustical characteristics appropriate for each phase of the liturgy. In this study, acoustic measurements were taken at various source locations and directions using both old and new liturgies performed in Japanese churches. A directional loudspeaker was used as the source to provide vocal and organ acoustic fields, and impulse responses were measured. Various acoustical parameters such as reverberation time and early decay time were analyzed. The speech transmission index was higher for the new Catholic liturgy, suggesting that the change in liturgy has improved speech intelligibility. Moreover, the interaural cross-correlation coefficient and early lateral energy fraction were higher and lower, respectively, suggesting that the change in liturgy has made the apparent source width smaller.  相似文献   

12.
针对一阶区间摄动有限元法在声场参数不确定程度增大时误差过大的缺陷,在二阶Taylor展开的基础上推导了声学二阶区间摄动有限元法,并将其应用于区间不确定声场的声压响应分析。该方法先对声学区间有限元方程的声压响应向量进行二阶Taylor展开,获取声压响应的二阶近似响应向量;再根据二次函数极值定理获得声压响应向量的上下界。二维管道声场与轿车声腔模型的数值分析算例表明,与一阶区间摄动有限元法相比,二阶区间摄动有限元法有效提高了计算精度。因此二阶区间摄动有限元适合不确定度更大的区间不确定声场声压响应分析,具有良好的工程应用前景。   相似文献   

13.
本文在回热器边界声场调制理论的基础上,考虑了两端换热器和谐振管变径的影响,推导出热声系统(谐振管和回热器)内声场与双声源复声压相关的声场调制关系式。理论和实验分析了双声源复声压对谐振管中的行波比率以及回热器中的声阻抗的调制,并给出通过复声压调制后的系统内声场分布图。对比结果表明该声场调制关系式的适用性,通过双声源复声压的调节,能调制出谐振管及回热器所期望的工作声场。  相似文献   

14.
In this work are investigated two topics associated with numerical calculations of the transmission loss in acoustical silencers: analysis of acoustic chambers employing active/inactive finite elements and its optimization using the GA (genetic algorithm) with integer variables. The technical information on the use of active/inactive elements and the definition of all the design variables used for the entire control of the finite element mesh are detailed. Although simple, the numerical results for the examples analyzed show excellent convergence achieved with the combination of these two techniques for the optimization of symmetrical acoustic chambers.  相似文献   

15.
Methods of experimental spatial filtering of wall pressure fluctuations beneath a turbulent boundary layer are developed with the aim of obtaining information on the wave number-frequency spectrum. The spatial filtering of the pressure field components by wave-vector filters is studied. The method of spatial filtering of pressure fluctuations by an acoustic array, i.e., a periodic structure with a finite number of elementary transducers, is analyzed. The relation between the wave number characteristic of the acoustic array and the wave number spectrum of the amplitude distribution of transducer’s local sensitivity is determined. Quantitative estimates are obtained for the sensitivity of the array to the wave number spectrum of turbulent boundary-layer pressures, which is necessary for measuring the wall pressure fluctuations in a turbulent boundary layer by wave-vector filters.  相似文献   

16.
Assaad J  Hladky AC  Cugnet B 《Ultrasonics》2004,42(1-9):443-446
A three-dimensional finite element model has been developed which allows the harmonic analysis of a piezoelectric structure mounted on a rigid baffle and radiating into water. The solution of this problem consists of coupling a finite element method to a boundary element method. The first one enables the modelling of the vibrating structure and the second one the modelling of propagating waves in the semi-infinite fluid medium surrounding the structure. In this way, the near-field and the far-field pressures are calculated as well as the displacement field of the piezoelectric structure taking into account the acoustical interaction. Numerical and experimental results are provided which validate the numerical procedure. The good agreement obtained indicates that this three-dimensional model is a very useful tool to optimise the design of transducer arrays used in medical imaging.  相似文献   

17.
提出和优化了环形稀疏声源阵列涡旋声场的形成方法,进行了涡旋声压,相位和振动速度的理论推导和特性分析。通过改变声源数、声源频率和观测距离等参数,对声涡旋场的模拟结果证明,声涡旋半径主要由信号波长决定,声源频率越高,声涡旋半径越小,能量越集中;涡旋声压随着声源数的增加而线性提高,随着传播距离的增加而减小;声涡旋环形相位分布的线性度随着声源数、声源波长和传播距离的增加而提高。建立了3/4/6/8声源实验系统,径向声压和相位分布以及环形相位分布的测量结果和模拟结果具有较好的一致性,同时悬吊泡沫盘的旋转证明了声涡旋角动量的传输。本研究中声涡旋场的特性分析和参数优化为粒子操控及其在生物医学中的应用提供了依据。   相似文献   

18.
Near-field acoustical holography (NAH) is a powerful tool for identifying noise sources and visualizing acoustic field. By recording the acoustic pressures in the near-field, the acoustic quantities in the whole 3-D field can be reconstructed and predicted. However, the current theory of NAH is not applicable to tracking large scale moving noise sources. Therefore, the hybrid near-field acoustical holography is developed for reconstructing acoustic radiation, which is derived from statistically optimized ne...  相似文献   

19.
This study numerically analyzes submerged cylindrical shells using a coupled boundary element method (BEM) with finite element method (FEM) in conjunction with the wave number theory, in which the spatial Fourier transform of surface velocity for cylinders is directly related to pressure in a far field. The acoustic loading is formulated using a symmetric complex matrix derived from a boundary integral equation where the symmetry is based on an acoustic reciprocal principle for surface acoustics. In this formulation the acoustic loading matrix is a large acoustic element whose degree of freedom is connected to the normal displacement of the vibrating structures. The coupled BEM/FEM equation is a banded, symmetric matrix, and thus its bandwidth can be minimized using a proper algorithm. This formulation significantly increases numerical efficiency. The computed normal velocity is thus transformed to wave number representation to examine acoustic radiation. A finite plane cylindrical shell, without attached stiffeners, and a shell with internal ring stiffeners are chosen to demonstrate the present analysis procedure. The far field pressure computed directly from the integral equation and predicted by wave number theory correlates closely with increasing vibrating frequency. Meanwhile, the influences of the internal ring structures on acoustic radiation are examined using the wave number theory, which helps in understanding how internal structures influence radiated noise.  相似文献   

20.
万泉  张海滨  蒋伟康 《声学学报》2009,34(5):445-452
应用于复杂结构中频声振分析的扩散场多自由度互易原理采用位移变量描述系统,实质为弹性波场互易原理,应用于声波场时会造成模型自由度数不必要的增加。建立基于声压描述的扩散声场受挡模型,利用声辐射模态描述扩散声场中结构的表面受挡声压;据此提出基于声压描述的扩散声场多自由度互易原理,发现扩散声场中结构表面受挡声压的互谱矩阵与该结构在自由空间中振动辐射声波的声阻矩阵成正比。该互易原理与传统的单自由度互易原理表达形式相似,但适用于任意自由度结构。该互易原理可用于扩散声场中复杂结构的表面受挡声压的自谱及相关分析,仿真研究表明当边界元网格尺寸小于声波波长的1/6(线性单元)或1/3(二次单元)时,数值解与理论解完全吻合。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号