首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
针对非对称阻抗插入管消声器三维理论建模与求解问题,提出了一种半解析变分建模和求解方法,试验及有限元结果验证了理论模型和求解结果的正确性,开展了模态频率、声压响应及传递损失等声场特性的预测分析。首先构建插入管消声器内部子声场拉格朗日泛函,基于声压与质点振速连续性条件,得到插入管消声器三维理论模型。随后,将子声场声压展开为切比雪夫-傅里叶级数组合形式,按里兹法求得消声器三维声场模态信息。搭建了消声器传递损失试验平台,进行了刚性壁面和阻抗壁面消声器传递损失测试试验,对理论模型和计算结果进行了验证。通过算例分析了壁面阻抗的大小、阻抗面积和分布形式以及插入管偏置对消声器消声性能的影响。结果表明,提出的变分建模求解方法是有效的,对消声器壁面阻抗位置和形式的合理设置可有效降低输出声压。   相似文献   

2.
针对板-腔耦合系统的声辐射模态(ARM)计算问题,提出了一种基于能量原理的声辐射模态计算方法,该方法从能量原理的动力学方程构建起声压模态幅值和结构模态幅值的关系,通过将声势能表示为结构模态幅值向量的二次型形式,得到板-腔耦合系统的声辐射模态,弥补了前人理论在解决声腔为阻抗壁面和结构-声为强耦合条件时的不足。通过数值算例验证了本文计算方法的正确性和有效性,在此基础上分析了壁面和结构-声耦合条件变化对声辐射模态特性的影响。结果表明:声辐射模态辐射效率曲线会在声腔模态频率处产生峰值,阻抗壁面的引入会降低声辐射模态辐射效率在峰值处的幅值,并且阻抗值越小,幅值衰减效应越明显,具体表现为声势能曲线在辐射效率峰值频率处幅值会下降;强耦合条件下低频段声势能响应主要由弹性板结构模态激发,响应峰值密度更高,幅值更低。低频同频宽的声辐射模态辐射效率峰值数更少,峰值频率更高。  相似文献   

3.
从理论上推导了声学超表面对平面声波的作用模型,该理论模型计及声波高阶衍射模态,从而能够计及超表面微结构之间的声学干扰.通过与数值结果对比,该模型预测的反射频率精度得到了一定程度的提高,并能够分辨出相邻孔声场之间的耦合模态.讨论了声学超表面吸声特性与阻抗特性对高超声速边界层内Mack第2模态的抑制机理,研究发现通过设计超表面阻抗特性,使得入射声波与反射声波在壁面处相位相反,同样可以抑制Mack第2模态.基于理论模型,分别优化设计得到最优的微结构几何尺寸,并通过对Mach 6平板边界层流动进行稳定性分析,验证了超表面不同声学特性的抑制效果.   相似文献   

4.
方智  季振林 《声学学报》2013,38(5):607-614
将数值模态匹配法应用于计算横截面为任意形状的直通穿孔管抗性消声器的声学特性。应用二维有限元法计算横截面的本征值和本征向量,应用模态匹配技术求解模态幅值系数,进而得到所需的声学量。对于圆形和椭圆形直通穿孔管消声器的传递损失,数值模态匹配法计算结果与三维有限元计算结果和相应的实验测量结果吻合良好,表明数值模态匹配法能够精确计算直通穿孔管消声器的声学特性。计算结果表明,穿孔管的偏移影响消声器在中高频段的消声特性,同轴结构消声器的消声性能好于非同轴结构。   相似文献   

5.
范一良  季振林 《声学学报》2022,47(5):675-685
为计算和分析具有复杂结构的阻抗复合式消声器的宽频消声性能,建立了一种高效声学有限元方法,给出了不同边界条件下的边界积分处理细节,得到有限元全局系数矩阵表达式,设计出计算程序框架以实现这些算法,其求解规模和计算速度与商业软件相比有优势。为计算阻抗复合式消声器的传递损失,通过阻抗管测量和数据拟合得到了吸声材料声学特性的经验公式。计算和测量了两通穿孔阻抗复合式消声器的传递损失,二者良好的吻合验证了声学有限元方法和计算程序的正确性。研究表明,插管长度影响消声器在中高频段的消声特性,右侧隔板上穿孔会消除共振峰,中高频消声性能随着出口管穿孔率的增加而提升。   相似文献   

6.
研究了充水亥姆霍兹共振器的弹性壁对其声学特性的影响。建立了考虑壁面弹性的圆柱形共振器的等效集中参数理论模型,并在静水管路上进行了实验验证。从共振器的共振频率、激励声压与腔内声压的传递函数以及共振器的传递损失等方面阐述了弹性壁的影响,并对刚性壁假设和弹性壁结果进行了比较。理论和实验都证明了腔壁弹性对亥姆霍兹共振器的声学特性有很大的影响。  相似文献   

7.
循环水槽中试验测量了腔体内水动力自噪声,并与模态法建立的湍流脉动压力引起腔体自噪声预报进行比较验证。透声窗振动以简支边界为条件,腔体内部声波以刚性边界为条件模态展开,通过辐射边界条件建立模态耦合振动方程。在随机湍流脉动压力作用下,推导了模态振动方程在随机力激励下的自噪声功率谱响应。对循环水槽中5 m/s和8 m/s两种流速工况下的腔体水动力自噪声和湍流脉动压力进行了测试,结合测量的脉动压力预报方法可以计算腔体水动力自噪声量值,理论预报与试验测量结果大致吻合,趋势一致,为声呐罩材料选取及声学环境控制提供了一种分析方法。   相似文献   

8.
循环水槽中试验测量了腔体内水动力自噪声,并与模态法建立的湍流脉动压力引起腔体自噪声预报进行比较验证。透声窗振动以简支边界为条件,腔体内部声波以刚性边界为条件模态展开,通过辐射边界条件建立模态耦合振动方程。在随机湍流脉动压力作用下,推导了模态振动方程在随机力激励下的自噪声功率谱响应。对循环水槽中5 m/s和8 m/s两种流速工况下的腔体水动力自噪声和湍流脉动压力进行了测试,结合测量的脉动压力预报方法可以计算腔体水动力自噪声量值,理论预报与试验测量结果大致吻合,趋势一致,为声呐罩材料选取及声学环境控制提供了一种分析方法。  相似文献   

9.
方智  季振林 《声学学报》2015,40(3):404-412
将数值模态匹配法(NMM)扩展应用于计算有均匀流存在时直通穿孔管抗性和阻性消声器的声学特性,编写了相应的计算程序。对于圆形同轴穿孔管抗性和阻性消声器,应用数值模态匹配法计算得到的传递损失结果与实验测量结果吻合良好,从而验证了计算方法和计算程序的正确性。进而应用数值模态匹配法研究了运流效应和穿孔阻抗以及穿孔管偏移对穿孔管抗性和阻性消声器传递损失的影响。研究结果表明,马赫数越高,穿孔管抗性消声器在中高频的消声量越高,阻性消声器在整体频段内的消声性能越差;低马赫数时运流效应对穿孔管抗性消声器的影响可以忽略,马赫数较高时运流效应和穿孔阻抗的影响比较明显;对于穿孔管阻性消声器,穿孔阻抗对消声器声学特性的影响比运流效应的影响小,但是与真实值的差别不可忽略;穿孔管偏移对消声器声学特性的影响与频率和消声器结构均相关。   相似文献   

10.
将数值模态匹配法(NMM)扩展应用于计算有均匀流存在时直通穿孔管抗性和阻性消声器的声学特性,编写了相应的计算程序。对于圆形同轴穿孔管抗性和阻性消声器,应用数值模态匹配法计算得到的传递损失结果与实验测量结果吻合良好,从而验证了计算方法和计算程序的正确性。进而应用数值模态匹配法研究了运流效应和穿孔阻抗以及穿孔管偏移对穿孔管抗性和阻性消声器传递损失的影响。研究结果表明,马赫数越高,穿孔管抗性消声器在中高频的消声量越高,阻性消声器在整体频段内的消声性能越差;低马赫数时运流效应对穿孔管抗性消声器的影响可以忽略,马赫数较高时运流效应和穿孔阻抗的影响比较明显;对于穿孔管阻性消声器,穿孔阻抗对消声器声学特性的影响比运流效应的影响小,但是与真实值的差别不可忽略;穿孔管偏移对消声器声学特性的影响与频率和消声器结构均相关。  相似文献   

11.
A modeling method for the dynamic characteristics analysis of a slender acoustical cavity with impedance end conditions is established. In order to satisfy the continuity requirement at impedance ends for the first order differential of sound pressure, field function is constructed as the standard Fourier series supplemented by boundary smoothed auxiliary polynomials. System characteristic equation is derived by solving the governing differential equation and impedance acoustic boundary of slender acoustical cavity system simultaneously,relevant acoustical modal information is obtained via the state space solution procedure. In numerical simulation, various acoustic variables, such as acoustical modal frequency, sound pressure modal shape, sound pressure response and the particle velocity, are presented for the slender acoustical cavity system with different boundary conditions and compared with those results in the existing literature. The correctness and effectiveness of the proposed method are then fully validated.  相似文献   

12.
A Fourier series method is proposed for the acoustic analysis of a rectangular cavity with impedance boundary conditions arbitrarily specified on any of the walls. The sound pressure is expressed as the combination of a three-dimensional Fourier cosine series and six supplementary two-dimensional expansions introduced to ensure (accelerate) the uniform and absolute convergence (rate) of the series representation in the cavity including the boundary surfaces. The expansion coefficients are determined using the Rayleigh-Ritz method. Since the pressure field is constructed adequately smooth throughout the entire solution domain, the Rayleigh-Ritz solution is mathematically equivalent to what is obtained from a strong formulation based on directly solving the governing equations and the boundary conditions. To unify the treatments of arbitrary nonuniform impedance boundary conditions, the impedance distribution function on each specified surface is invariantly expressed as a double Fourier series expansion so that all the relevant integrals can be calculated analytically. The modal parameters for the acoustic cavity can be simultaneously obtained from solving a standard matrix eigenvalue problem instead of iteratively solving a nonlinear transcendental equation as in the existing methods. Several numerical examples are presented to demonstrate the effectiveness and reliability of the current method for various impedance boundary conditions, including nonuniform impedance distributions.  相似文献   

13.
A general Chebyshev–Lagrangian method is proposed to obtain the analytical solution for a rectangular acoustic cavity with arbitrary impedance boundary conditions. The originality of the present paper is the successful attempt of applying orthogonal polynomials, such as Chebyshev polynomials of the first kind, to the analysis of a rectangular sound field with general wall impedance. The sound pressure is uniformly expressed as triplicate Chebyshev polynomial series which is independent in each direction. The Chebyshev polynomial series solution is obtained using the Rayleigh–Ritz procedure after considering the influence of boundary impedance on the cavity as the work done by the impedance surfaces in the Lagrangian function. The accuracy and reliability of the proposed method are validated against the analytical solutions and some numerical results available in the literature. Excellent orthogonality and complete properties of the Chebyshev polynomials ensure the rapid convergence, numerical stability, high accuracy of the current solution. The simplicity and low computational cost of the present approach make it preferable to obtain the results of complex models even in the relative high frequency range by choosing enough truncated terms in the sound pressure expression. Numerous cases with various uniform or non-uniform impedance boundary conditions are analyzed numerically and some of the results can be used as benchmark. It is shown that the impedance boundary condition can effectively influence or modify the acoustic characteristics and response of a cavity.  相似文献   

14.
In this study, the three-dimensional finite element frequency domain acoustical analysis is used to determine the modal shapes of cylindrical foam with a rigid backing and subjected to a unit normal incidence impulsive sound pressure loading while placed in the impedance tube. The acoustic results predicted for the foam are validated by data from the two-microphone acoustic measurements, and good agreement between the measured and predicted acoustic results is observed. The mode shapes of the incident face of the foam at a low frequency, resonant and anti-resonant frequencies as well as the frequency that occurring the peak loss modulus are illustrated. It is found that the modal behaviors of the cylindrical foam are dominated by the fluid, although the acoustic properties of the cylindrical foam are also influenced by the circumferential edge constraints and the modal movements of the solid skeleton.  相似文献   

15.
An analytical study on the vibro-acoustic behaviors of a double-panel structure with an acoustic cavity is presented. Unlike the existing studies, a structural–acoustic coupling model of an elastically restrained double-panel structure with an acoustic cavity having arbitrary impedance on sidewalls around the cavity is developed in which the two dimensional (2D) and three dimensional (3D) modified Fourier series are used to represent the displacement of the panels and the sound pressure inside the cavity, respectively. The unknown expansions coefficients are treated as the generalized coordinates and the Rayleigh–Ritz method is employed to determine displacement and sound pressure solutions based on the energy expressions for the coupled structural–acoustic system. The effectiveness and accuracy of the present model is validated by numerical example and comparison with finite element method (FEM) and existing analytical method, with good agreement achieved. The influence of key parameters on the vibro-acoustic behaviors and sound transmission of the double-panel structure is investigated, including: cavity thickness, boundary conditions, sidewall impedance, and the acoustic medium in the cavity.  相似文献   

16.
Helmholtz水声换能器弹性壁液腔谐振频率研究   总被引:4,自引:0,他引:4       下载免费PDF全文
桑永杰  蓝宇  丁玥文 《物理学报》2016,65(2):24301-024301
针对传统Helmholtz水声换能器设计中刚性壁假设的局限性,将Helmholtz腔体的弹性计入到液腔谐振频率计算中,实现低频弹性Helmholtz水声换能器液腔谐振频率精确设计.基于细长圆柱壳腔体的低频集中参数模型,导出了腔体弹性引入的附加声阻抗表达式,得到了弹性壁条件下Helmholtz水声换能器等效电路图,给出了考虑了末端修正的弹性壁Helmholtz共振腔液腔谐振频率计算公式.利用ANSYS软件建立了算例模型,仿真分析了不同材质、半径、长度时的Helmholtz共振腔液腔谐振频率.结果对比表明弹性理论值与仿真值符合得很好,相比起传统的刚性壁理论计算结果,本文的弹性壁理论得出的液腔谐振频率值有所降低,与真实情况更加接近.本文的结论可以为精确设计低频弹性Helmholtz水声换能器提供理论支持.  相似文献   

17.
This paper presents an analytical model for acoustic transmission characteristics of a cylindrical cavity system representing the acoustic resonance conditions of a Korean bell. The cylindrical cavity system consists of an internal cavity, a gap, an auxiliary cavity, and a rigid base. Since the internal cavity is connected to the external field through a gap, determination of the acoustic transmission characteristics becomes a coupling problem between the internal cavity and external field. The acoustic field of the internal cavity is considered by expanding the solution method of the mixed boundary problem, and the external field is addressed by modifying the radiation impedance model of a finite cylinder. The analytical model is validated by comparison with both experiment and a boundary element method. Using the analytical model, the resonance conditions are determined to maximize the resonance effect. Thus, the resonance frequencies of the bell cavity system are investigated according to the gap size and auxiliary cavity depth. By adjusting gap size or auxiliary cavity depth, the cavity resonance frequency is tuned to resonate partial tones of the bell sound. Finally, the optimal combination of gap size and auxiliary cavity depth is determined.  相似文献   

18.
The transfer matrix method was used to analyze the acoustical properties of stepped acoustic resonator in the previous paper. The present paper extends the application of the transfer matrix method to analyzing acoustic resonators with gradually varying cross-sectional area. The transfer matrices and the resonant conditions are derived for acoustic resonators with four different kinds of gradually varying geometric shape: tapered, trigonometric, exponential and hyperbolic. Based on the derived transfer matrices, the acoustic properties of these resonators are derived, including the resonant frequency, phase and radiation impedance. Compared with other analytical methods based on the wave equation and boundary conditions, the transfer matrix method is simple to implement and convenient for computation.  相似文献   

19.
The objective of this paper is to present recent investigations in characteristics of the sound field generated by neurosurgical endoscopic ultrasonic probes (NEUPs) for minimally invasive surgery. The importance of this information has been investigated and discussed taking into account following facts: 1. According to the International Standard IEC 61847:1998 basic acoustical output characteristics of ultrasonic surgical equipment is declared for and measured in an acoustical free field. The standard generally treats the ultrasonic probe as an omnidirectional point source of the zero order (monopole source). 2. In real conditions, operations with NEUPs are performed within the acoustical near field. Having in mind that the cavitational and hydrodynamic effects are dominant, two theoretical boundary conditions can be present. The first one takes place when operations are performed near the "soft" acoustical boundary (tissue/air), and the second one is near the "rigid" acoustical boundary (tissue/bone). Reflections of sound waves from boundaries have influence on the characteristics of the ultrasonic probe (transducer) and on the sound field. In such cases spherical waves of the first and second order are generated. Directivity of sound sources takes shape in the far field and is easier to measure there. On the basis of measured directivity patterns, the influence of different operational conditions (immersion depth of the probe tip, boundary type, acoustical impedance of the medium etc.) on the radiated sound power and spatial distribution of the sound pressure can be estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号