首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用对比实验,分析不同风速对液氮冷藏箱体内温度分布及降温速率的影响。研究结果表明:单排喷嘴间距0.5m工况下,随着风机风速增大,温度分布方差减小,降温速率降低,冷藏厢体内温度分布均匀性增强,冷藏厢体强制对流换热效果越明显。  相似文献   

2.
基于CFD仿真软件FLUENT,建立了封闭球形容腔内氦气关键物性参数随温度变化的深低温自然对流仿真模型。利用该模型对封闭球形容腔内20~100 K温度下不同瑞利数(10~8Ra10~(11))伪稳态自然对流换热进行了数值模拟,得到了速度场分布、温度场分布和努塞尔数(Nu).开展了液氢温区球形封闭容腔内氦气伪稳态自然对流换热试验。通过与试验数据的对比分析,验证了本文所提出的深低温自然对流模型的有效性。利用最小二乘法,获得了深低温球形容腔内氦气自然对流换热准则数方程。  相似文献   

3.
针对360W@4.5K氦制冷机的降温过程建立了数学模型。首先分别建立了各个部件的模型,然后通过氦气状态参数的传递将各个模块连接起来。对关键部件换热器采用集中参数法,忽略其内部的温度梯度;利用换热器温度变化速率远小于氦气的特点,将换热器的温度变化从时间上离散,在每一个时间步长内,只考虑氦气温度的变化。该模型可求解不同控制策略下的降温时间,从而为不同控制策略的比较提供依据。  相似文献   

4.
高温超导电机转子一种常见的冷却方式为G-M制冷机提供冷量,氦气为冷媒,氦气泵提供循环动力,其转子降温过程是一个多参数耦合的复杂过程,针对该种冷却方式,阐述了一种基于集总参数法的转子降温分析简易方法,进行了降温计算,并与试验值进行了比较,分析了降温过程中转子与冷头的温度变化特点。  相似文献   

5.
为了揭示低温推进剂贮箱的增压规律和热分层特性,在以液氮为贮存介质的低温流体高效贮存平台上,进行了不同充注率下的贮箱自增压及氦气增压实验。得到充注率分别为35%,50%和65%时的贮箱增压速率分别为7.54 kPa·h~(-1),13.02 kPa·h~(-1)和28.26 kPa·h~(-1).获得了达到相同压力水平时各自充注率对应的温度分布,分析了不同充注率时贮箱温度梯度的变化规律。最后使用常温氦气作为增压气体,将贮箱充注率为50%的贮箱分别增压到180 kPa,380 kPa和580kPa,分析了氦气充注过程及达到不同压力水平时贮箱内温度分布变化规律.  相似文献   

6.
大型低温配件的降温试验复杂和多变,文中针对大型回热换热器的降温进行了研究。将回热换热器置于特制的冷箱内,利用液氮作为冷源,氦气做为载冷剂为换热器提供降温条件;隔膜压缩机为循环氦气提供循环压力。试验前将换热器上面布置9支传感器,传感器所采集的数据自动记录并保存在上位机内,同时绘制降温曲线,为大型回热换热器的降温研究提供了数据。  相似文献   

7.
作为红外标准光源,要求30℃~420℃黑体能快速升温到设定温度点,并保持温度稳定。针对其升降温功率差别大、滞后大等特点,用开关控制冲击响应自整定方法,得到黑体温升超调量、最大升降温速率等参数,采用复合智能温控策略,实现了30℃~420℃黑体温升前期快,接近设置温度时改以渐进方式达到并稳定在设定温度点。实验结果表明,实现了30℃~420℃黑体无超调地到达设定温度点,且稳定性为±0.03℃/min,该指标达到了国际同类产品水平。  相似文献   

8.
外层空间研究特别是深空探测催生并促进了空间热环境模拟技术的发展。热环境模拟设备用于模拟太空高真空、冷黑、高低温、大温差热变形、太阳辐照等环境。文中综述了国内外主流的空间环境模拟设备,分为热真空试验设备和高低温试验设备两大类,对各自的设计目标、规格型号、真空获得、热沉形式等研制特点以及所能达到的极限高低温、降温速率、温场均匀性等热设计参数进行了比较性的阐述,较全面地总结了空间环境模拟技术的技术发展和现状。  相似文献   

9.
为了减小磁共振成像低温超导磁体冷却过程中的液氮和液氦消耗,提高降温过程的可控性,提出基于千瓦级斯特林制冷机的氦气循环冷却系统,可将磁体快速冷却至液氮温度以下。对冷却系统建立数学物理模型并开展数值计算,在氦气平均压力为1.7 bar、流速为9.8 m/s时,系统冷却总重量为2 t的室温超导磁体至液氮温度仅需59.0 h。基于模拟结果开展实验研究,在相同条件下磁体实际降温时间为69.5 h,模拟计算与实验结果吻合良好。结果表明,该系统具备快速冷却超导磁体的能力,具有广阔的应用前景和深远的影响。  相似文献   

10.
针对大冷量氦气循环低温系统的研制进行了论述,该系统由氦气循环、低温换热和监测控制三个单元组成。氦气循环单元为氦气提供循环动力,以及压力和流量的调节,氦气循环单元中的氦气压缩机由螺杆制冷压缩机进行改造,同时对螺杆压缩机的冷却、后处理进行了优化。低温换热单元为循环氦气提供冷源,该单元使用的冷源介质为液氮和液氦,先使用液氮对系统进行预冷,然后采取液氦进行降温。监测控制单元对系统中的温度、压力和流量测量点进行监测,上位机软件自动绘制温度和压力曲线,并对数据进行存储。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号