首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
以低温贮箱压力控制为目标,建立了热力学排气系统(TVS)和贮箱内流体流动及气液相变过程的数学模型。以18.09m~3低温贮箱在地面工况充注率75%、漏热量0.76W/m~2为例,计算了不同贮存工质(液氢、液氮、液氧)下贮箱自增压过程及开启TVS后对贮箱压力控制的效果。结果表明,相同漏热率下液氢贮箱的气枕升压速率远大于相同充注率下的液氮和液氧贮箱升压速率;TVS运行后三种工质贮箱压力均可有效地控制在165.5~172.4kPa范围内。对比了不同工质热力学排气系统的运行周期、运行时间及排气量等关键参数,同时还分析了贮箱内液体的温度变化规律。  相似文献   

2.
由于外部漏热的影响,静置时低温贮箱内的气枕压力会逐渐升高,压力升高相应地会改变贮箱内气相空间的温度分布。文中对低温液氮贮箱进行了静置增压过程实验,结果表明:增压所耗时间随气枕压力升高而增大,气相空间垂直方向各温度在实验压力范围内也相应升高;低温贮箱在不同的气枕压力下进行了放气过程实验,并对泄压过程中气体流量随气枕压力的变化进行了分析。  相似文献   

3.
火箭低温液体推进剂增压系统数学模型   总被引:7,自引:0,他引:7  
针对火箭低温液体推进剂增压系统建立了数学模型,目的是为获得满足工程精度要求的飞行期间贮箱内气相空间的压力、温度以及贮箱壁壁温的变化规律.数学模型被证明有较好的计算精度,且模型能适应不同种类的增压气体,甚至混合型增压气体,能适应加注后停放期间和飞行期间的计算.  相似文献   

4.
冷氦增压系统是低温液体推进系统的关键技术之一。利用仿真软件Sinda/Fluint,对氧箱冷氦增压系统的冷氦气瓶加注过程和系统增压过程进行了基于集总参数法的建模与计算分析。首先,对冷氦气瓶加注过程给出了最优加注流量,并分析了气瓶内温度压力达到稳定所需的时间、冷氦气瓶充气过程瓶内最高温度以及气瓶与周围液氧的传热;其次,针对冷氦增压系统,详细研究了两种气瓶布局条件下,贮箱增压过程中冷氦气瓶温度、压力随时间的变化,以及氧箱内气枕与液氧的温度、压力变化情况;最后,还对增压过程中的氦气流量、传热特性进行了研究。  相似文献   

5.
对以液氮为工质的低温贮箱进行了增压实验,气枕压力分别从常压增压至1.93bar、1.53bar、1.21bar,由于实验过程中液位的变化影响,增压速率依次略有下降。建立了贮箱增压数值模型,对1.93bar增压过程进行了模拟分析并与实验值进行了对比。对三组增压实验过程中液氮表面的温度分层情况进行了研究,结果表明液相温度分层主要存在于液氮表面,并且温度分层情况受气枕压力的影响明显,液相主流温度区几乎不随气枕压力变化。  相似文献   

6.
对以液氮为工质的低温贮箱进行了增压实验,气枕压力分别从常压增压至1.93bar、1.53bar、1.21bar,由于实验过程中液位的变化影响,增压速率依次略有下降。建立了贮箱增压数值模型,对1.93bar增压过程进行了模拟分析并与实验值进行了对比。对三组增压实验过程中液氮表面的温度分层情况进行了研究,结果表明液相温度分层主要存在于液氮表面,并且温度分层情况受气枕压力的影响明显,液相主流温度区几乎不随气枕压力变化。  相似文献   

7.
蒸气冷却屏可有效降低贮箱漏热,延长低温流体贮存时间。为明确间歇性排气下蒸气冷却屏是否有足够的蓄冷能力能够在短时排气过程中充分蓄存/回收低温气体冷量,本文针对液氢贮箱绝热结构建立了耦合真空多层绝热与蒸气冷却屏的瞬态传热模型,研究了间歇性排气下液氢贮箱外部绝热结构和内部气液相的热力参数变化规律,讨论了绝热结构瞬态温度分布随蒸气冷却屏蓄冷能力的变化特性,对比分析了蓄冷能力对蒸气冷却屏绝热性能的影响。  相似文献   

8.
理论分析了低温贮箱的热性能,计算并对比了低温贮箱各部分漏热情况。通过在静置状态下的蒸发率实验,测量了一定时间内的低温液体蒸发量,以此计算了液氮工质的蒸发率以及外部总漏热量,并与计算值进行了对比。通过制冷机降低贮箱内气相温度,结果表明,气枕压力及蒸发率随气相空间温度减小能够有效降低。  相似文献   

9.
根据低温推进剂长时间在轨贮存的要求,设计并搭建了绝热系统地面验证测试装置,对绝热系统的热力学性能进行测试。针对55L贮箱,采用了泡沫绝热(spray on foam insulation,SOFI)和多层绝热(multilayer insulation,MLI)结合的复合绝热系统,分别在高真空(5×10^-3Pa以上)和大气压条件下进行了验证实验(液氮作为替代工质)。贮箱外绝热系统为15m m厚泡沫绝热层和45组多层绝热时,高真空条件下液氮日蒸发率为0.77%,多层绝热层表观热导率为1.29×10^-4W/(m·K),据此折算为液氧时日蒸发率为0.55%。将高真空和大气压条件下的实验结果比较发现,泡沫绝热层所占热阻分别为总热阻的0.19%和45.14%。  相似文献   

10.
为研究不同工况和工质对微通道背板热管系统最佳充液率的影响,设计系统充液率实验,通过分析充液率对换热量、背板竖向出风温度分布、蒸发器及冷凝器进出口工质温度及压力的影响,确定不同条件下的系统最佳充液率。结果表明:1)标准工况下,采用R22工质的系统最佳充液率为65%~75%,背板竖向各位置出风温度最低,蒸发器进出口工质温差达到最小;2)系统最佳充液率随着背板进风温度的上升而增大,进风温度超过40℃后,最佳充液率保持不变;3)系统最佳充液率随冷凝器进水温度的降低而增大;4)R134a系统和R22系统最佳充液率基本一致,最大换热量不同。  相似文献   

11.
通过实验研究了顶部受热低温贮罐中低温流体温度分层、压力变化情况,并进行了理论计算。研究结果显示,在静置过程中贮罐在顶部漏热时气相空间温度分层较为显著,且由于顶部的持续漏热,气相空间的温度梯度一直存在;液相的温度梯度曲线与误差函数曲线一致;贮罐的压力可分为两部分:初始的快速增压和之后的稳定增压阶段;随着静置时间的增加,液体温度分层更加明显,贮罐气枕压力逐渐变大。该研究为确定贮罐安全贮存增压压力和贮存时间提供技术依据,为工程实际应用提供支撑。  相似文献   

12.
设计搭建了太阳能热声发动机实验系统,它由双轴全自动跟踪菲涅尔透镜聚焦型集热器和小型化驻波热声发动机两大组件构成。分别对充注不同压力N_2、He、Ar三种工质的太阳能热声发动机的起振温度、起振时热声核温度分布、压力振幅进行了实验研究。结果表明,氮气、氦气和氩气在相同充气压力下,He起振温度最高,N_2起振温度最低;N_2在充气压力1.0 MPa时达到最低起振温度394.8℃,且其压力振幅对充气压力变化不敏感;Ar在充气压力1.0 MPa时达到最低起振温度418.2℃,且其压力振幅随着充气压力的升高而逐渐增加。实验结果为优化太阳能热声发动机系统的热力性能提供了实验依据。  相似文献   

13.
选择R404A、R23作为复叠式制冷系统的高、低温级循环制冷剂,构建了冲击试验箱的低温箱制冷系统,高温箱采用电加热控制方法,高、低温箱均采用PID控制。实验结果表明,高温箱经过约12.8min达到预热温度210℃,偏差±0.3℃。低温箱经过约57min可达到预冷温度-70℃,偏差±0.5℃。冲击试验在-55℃~+200℃时,转换时间为5s,温度恢复时间不大于5min,温度偏差不大于±0.5℃。测试过程中,两级压缩机进、排气压力值稳定,说明系统达到设计要求。  相似文献   

14.
在低温物理研究方面,完成高压充气冷冻装置设计工作。设计指标为:充气压力100MPa,增压速率0.5-25MPa/h(可控),靶丸充注时间6-300h,最小冷却速率1K/min,压力控制精度0.25MPa。系统冷源采用功率0.5-1W、最低温度4.2K的低温制冷机冷却。这种系统使用灵活、方便,只要有电源就可以开展正常的实验,实验时间不受限制,制冷机运行时有微小的振动。  相似文献   

15.
低温制冷机与ZBO存储系统耦合数值模拟   总被引:2,自引:0,他引:2  
介绍了基于低温液体压力控制技术搭建的一套小型实验装置,并针对实验中的一项关键内容-低温制冷机与零蒸发(ZBO)存储系统耦合建立了采用CFD软件的数学模型.根据实验装置中的已知参数以及设计计算结果,模拟了制冷机关闭状态下不同时刻液氮贮箱内流体分布、制冷机开启状态下分别采用紫铜箔与高温热解石墨传热元件时,低温贮箱内流体及导热带上温度分布情况.由模拟结果得知,石墨比紫铜具有更强的冷量传输能力,使贮箱内液氮温度和压力更低,体现了高效耦合性,从而在理论上验证了采用石墨传热元件的可行性.最后针对实际情况,提出了石墨与铜导热带相结合的传热结构.  相似文献   

16.
选择R404A、R23作为超低温血浆速冻箱复叠制冷系统高、低温制冷循环的制冷剂,设计并建造了速冻箱实验系统,研究了速冻箱的性能。实验结果表明,系统高温级制冷循环启动后约0.5h速冻箱内温度下降到-70℃,温度波动度小于0.5℃,高、低温级制冷压缩机的压比分别为10.8和5.6,吸排气压力稳定,说明速冻箱的设计达到了要求。  相似文献   

17.
采用在真空夹层中充注纯度不高的一般工业用 CO2 的方法 ,来研究不同充注压力及不同绝热层材料下低温输送管路中的 CO2 冷凝真空绝热问题 ;分析了 CO2 纯度对绝热层真空度的影响。测量并计算了管路内充满液氮后真空绝热层的真空度、真空绝热层外壁壁温和绝热层的表观导热率。结果表明 ,在低真空绝热夹层中充注工业用 CO2 后 ,得到的真空绝热层绝热效果良好 ,能够满足一般的低温输送管路需求。  相似文献   

18.
基于Lockheed修正模型,对用于低温液体贮箱的变密度多层绝热性能进行理论研究。通过对Lockheed修正模型的分析,计算了贮箱内为不同低温液体时最优层密度随热边界温度的变化情况,研究了不同层密度配置方案时绝热多层的热流密度大小,并对不同方案的绝热效果进行了对比分析。  相似文献   

19.
基于Lockheed修正模型,对用于低温液体贮箱的变密度多层绝热性能进行理论研究。通过对Lockheed修正模型的分析,计算了贮箱内为不同低温液体时最优层密度随热边界温度的变化情况,研究了不同层密度配置方案时绝热多层的热流密度大小,并对不同方案的绝热效果进行了对比分析。  相似文献   

20.
由气冷屏、聚氨酯泡沫和变密度多层绝热组成的气冷屏复合绝热结构是一种新型的高效热防护绝热结构,通过对不同环境条件下低温贮箱气冷屏复合绝热结构的传热机理分析,推导了气冷屏复合绝热结构中屏温与屏位的数值计算关系,并在此基础上根据漏热量最小原则对气冷屏复合绝热结构中的屏位进行了优化。结果表明,随着环境条件的不同,气冷屏复合绝热机理不同,气冷屏最优位置也不同。常温常压的地面环境,气冷屏置于SOFI与VD-MLI之间时,低温贮箱漏热量最小,绝热效果最优;真空且温度变化剧烈的空间环境,气冷屏置于VD-MLI最中间时,低温贮箱漏热量最小,绝热效果最优。气冷屏复合绝热结构可进一步降低空间低温贮箱的漏热量,同时能满足地面及空间环境使用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号