首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon saw‐tooth refractive lenses have been in successful use for vertical focusing and collimation of high‐energy X‐rays (50–100 keV) at the 1‐ID undulator beamline of the Advanced Photon Source. In addition to presenting an effectively parabolic thickness profile, as required for aberration‐free refractive optics, these devices allow high transmission and continuous tunability in photon energy and focal length. Furthermore, the use of a single‐crystal material (i.e. Si) minimizes small‐angle scattering background. The focusing performance of such saw‐tooth lenses, used in conjunction with the 1‐ID beamline's bent double‐Laue monochromator, is presented for both short (~1:0.02) and long (~1:0.6) focal‐length geometries, giving line‐foci in the 2 µm–25 µm width range with 81 keV X‐rays. In addition, a compound focusing scheme was tested whereby the radiation intercepted by a distant short‐focal‐length lens is increased by having it receive a collimated beam from a nearer (upstream) lens. The collimation capabilities of Si saw‐tooth lenses are also exploited to deliver enhanced throughput of a subsequently placed small‐angular‐acceptance high‐energy‐resolution post‐monochromator in the 50–80 keV range. The successful use of such lenses in all these configurations establishes an important detail, that the pre‐monochromator, despite being comprised of vertically reflecting bent Laue geometry crystals, can be brilliance‐preserving to a very high degree.  相似文献   

2.
A novel hybrid X‐ray focusing scheme was developed for operation of the X‐ray streak camera at the Advanced Photon Source: an X‐ray lens focuses vertically from a long distance of 16 m and produces an extended focus that has a small footprint on an inexpensive sagittal mirror. A patented method is used to continuously adjust the focal length of the lens and compensate for chromatic dispersion in energy scans.  相似文献   

3.
An X‐ray one‐dimensionally focusing system, a refracting–diffracting lens (RDL), composed of Bragg double‐asymmetric‐reflecting two‐crystal plane parallel plates and a double‐concave cylindrical parabolic lens placed in the gap between the plates is described. It is shown that the focal length of the RDL is equal to the focal distance of the separate lens multiplied by the square of the asymmetry factor. One can obtain RDLs with different focal lengths for certain applications. Using the point‐source function of dynamic diffraction, as well as the Green function in a vacuum with parabolic approximation, an expression for the double‐diffracted beam amplitude for an arbitrary incident wave is presented. Focusing of the plane incident wave and imaging of a point source are studied. The cases of non‐absorptive and absorptive lenses are discussed. The intensity distribution in the focusing plane and on the focusing line, and its dependence on wavelength, deviation from the Bragg angle and magnification is studied. Geometrical optical considerations are also given. RDLs can be applied to focus radiation from both laboratory and synchrotron X‐ray sources, for X‐ray imaging of objects, and for obtaining high‐intensity beams. RDLs can also be applied in X‐ray astronomy.  相似文献   

4.
A new method of harmonics rejection based on X‐ray refractive optics has been proposed. Taking into account the fact that the focal distance of the refractive lens is energy‐dependent, the use of an off‐axis illumination of the lens immediately leads to spatial separation of the energy spectrum by focusing the fundamental harmonic at the focal point and suppressing the unfocused high‐energy radiation with a screen absorber or slit. The experiment was performed at the ESRF ID06 beamline in the in‐line geometry using an X‐ray transfocator with compound refractive lenses. Using this technique the presence of the third harmonic has been reduced to 10?3. In total, our method enabled suppression of all higher‐order harmonics to five orders of magnitude using monochromator detuning. The method is well suited to third‐generation synchrotron radiation sources and is very promising for the future ultimate storage rings.  相似文献   

5.
Focusing planar refractive mosaic lenses based on triangular prism microstructures have been used as an alternative approach for wide‐bandpass monochromatization of high‐energy X‐rays. The strong energy dependence of the refractive index of the lens material leads to an analogous energy dependence of the focal length of the lens. The refractive mosaic lens, in comparison with the refractive lens of continuous parabolic profile, is characterized by a higher aperture because of reduced passive material. In combination with a well defined pinhole aperture in the focal plane, the transmittance of photons of an appropriate energy can be relatively high and photons of deviating energy can be efficiently suppressed. The photon energy can be tuned by translating the pinhole along the optical axis, and the bandwidth changed by selecting appropriate pinhole aperture and beam stop. This method of monochromatization was realised at the ANKA FLUO beamline using a mosaic lens together with a 20 µm pinhole and beam stop. An energy resolution of 2.0% at 16 keV has been achieved.  相似文献   

6.
A novel high‐energy multi‐lens interferometer consisting of 30 arrays of planar compound refractive lenses is reported. Under coherent illumination each lens array creates a diffraction‐limited secondary source. Overlapping such coherent beams produces an interference pattern demonstrating strong longitudinal functional dependence. The proposed multi‐lens interferometer was tested experimentally at the 100 m‐long ID11 ESRF beamline in the X‐ray energy range from 30 to 65 keV. The interference pattern generated by the interferometer was recorded at fundamental and fractional Talbot distances. An effective source size (FWHM) of the order of 15 µm was determined from the first Talbot image, proving the concept that the multi‐lens interferometer can be used as a high‐resolution tool for beam diagnostics.  相似文献   

7.
The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X‐ray beam to spatially overlap with an 80 µm‐high low‐density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm?2 was calculated. A CRL is chromatic so it does not efficiently focus X‐rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment. A two‐chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X‐ray filter. A method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.  相似文献   

8.
An imaging system based on a polycapillary half‐focusing X‐ray lens (PHFXRL) and synchrotron radiation source has been designed. The focal spot size and the gain in power density of the PHFXRL were 22 µm (FWHM) and 4648, respectively, at 14.0 keV. The spatial resolution of this new imaging system was better than 5 µm when an X‐ray charge coupled device with a pixel size of 10.9 × 10.9 µm was used. A fossil of an ancient biological specimen was imaged using this system.  相似文献   

9.
The X‐ray lens, which is composed of opposing canted saw‐tooth structures, originally assembled from cut‐out pieces from long‐playing records, is understood by recognizing that an incident plane X‐ray wave will traverse a varying number of triangular prisms in them. The refraction will deflect any beam towards the prism tips and the variation of the deflection angle, which grows linearly with the number of traversed prisms, can result in X‐ray focusing. The structure offers focusing flexibility by simply changing the taper angle. This report will discuss the aberrations arising in the saw‐tooth structure in its simplest form with identical prisms. It is found that the saw‐tooth structures in low‐Z materials with focal length below 1 m provide less flux density in the focal spot than stacks of one‐dimensionally focusing refractive lenses with identical transmission function. This is due to excessive aberrations in the regular structure, which are absent in stacks of concave lenses, and which limit the focusing to spot sizes of just submicrometre dimensions, as measured experimentally for some lenses. It will be shown that this limitation can be overcome by appropriately modifying the prism shape. Then the image size could be reduced by about an order of magnitude to the diffraction limit with competitive numbers even below 0.1 µm. Microfabrication techniques are identified as the appropriate means for producing the structures.  相似文献   

10.
X‐ray free‐electron lasers (XFELs) generate sequences of ultra‐short spatially coherent pulses of X‐ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E? 2 × 10?6, is proposed. This is much better than for most modern X‐ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single‐crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV.  相似文献   

11.
On the basis of the eikonal approximation, X‐ray Bragg‐case focusing by a perfect crystal with parabolic‐shaped entrance surface is considered theoretically. Expressions for focal distances, intensity gain and distribution around the focus spot as well as for the focus spot sizes are obtained. The condition of point focusing is presented. The experiment can be performed using X‐ray synchrotron radiation sources (particularly free‐electron lasers).  相似文献   

12.
Aspherical surfaces required for focusing collimated and divergent synchrotron beams using a single refractive element (lens) are reviewed. The Cartesian oval, a lens shape that produces perfect point‐to‐point focusing for monochromatic radiation, is studied in the context of X‐ray beamlines. Optical surfaces that approximate ideal shapes are compared. Results are supported by ray‐tracing simulations. Elliptical lenses, rather than parabolic, are preferred for nanofocusing X‐rays because of the higher peak and lower tails in the intensity distribution. Cartesian ovals will improve the gain when using high‐demagnification lenses of high numerical aperture.  相似文献   

13.
In this work the coherence properties of the synchrotron radiation beam from an X‐ray undulator in a fourth‐generation storage ring are analyzed. A slightly focused X‐ray beam is simulated using a wavefront propagation through a non‐redundant array of slits and the mutual coherence function is directly obtained and compared with the Gaussian–Schell approximation. The numerical wave propagation and the approximate analytical approaches are shown to agree qualitatively, and it is also shown that, when the coherent fraction is selected by a finite aperture before the focusing element, even achromatic focusing systems like total reflection mirrors become slightly chromatic. This effect is also well accounted for in the Gaussian–Schell model. The wavefront propagation simulation through the non‐redundant array was repeated with an imperfect mirror demonstrating that, although the wavefront is distorted, its coherent length is practically unchanged.  相似文献   

14.
A focusing system based on a polycapillary half‐lens optic has been successfully tested for transmission and fluorescence µ‐X‐ray absorption spectroscopy at a third‐generation bending‐magnet beamline equipped with a non‐fixed‐exit Si(111) monochromator. The vertical positional variations of the X‐ray beam owing to the use of a non‐fixed‐exit monochromator were shown to pose only a limited problem by using the polycapillary optic. The expected height variation for an EXAFS scan around the Fe K‐edge is approximately 200 µm on the lens input side and this was reduced to ~1 µm for the focused beam. Beam sizes (FWHM) of 12–16 µm, transmission efficiencies of 25–45% and intensity gain factors, compared with the non‐focused beam, of about 2000 were obtained in the 7–14 keV energy range for an incoming beam of 0.5 × 2 mm (vertical × horizontal). As a practical application, an As K‐edge µ‐XANES study of cucumber root and hypocotyl was performed to determine the As oxidation state in the different plant parts and to identify a possible metabolic conversion by the plant.  相似文献   

15.
The first microbeam synchrotron X‐ray fluorescence (µ‐SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X‐ray capillary half‐lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters‐sized beam to a micrometer‐sized beam. This beamline was originally designed for deep X‐ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ‐SXRF and synchrotron X‐ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X‐ray beam (for SXPD), a fixed aperture and three gate valves. Two end‐stations incorporating optics and detectors for µ‐SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ‐SXRF station utilizes a polycapillary half‐lens for X‐ray focusing. This optic focuses X‐ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end‐station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single‐element Si (PIN) solid‐state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in‐house to generate a series of single‐column data which are compatible with available XRF data‐processing software. Finally, to test the performance of the µ‐SXRF beamline, an elemental surface profile has been obtained for a piece of ancient pottery from the Ban Chiang archaeological site, a UNESCO heritage site. It was found that the newly constructed µ‐SXRF technique was able to clearly distinguish the distribution of different elements on the specimen.  相似文献   

16.
Clessidra (hour‐glass) X‐ray lenses have an overall shape of an old hour glass, in which two opposing larger triangular prisms are formed of smaller identical prisms or prism‐like objects. In these lenses, absorbing and otherwise optically inactive material was removed with a material‐removal strategy similar to that used by Fresnel in the lighthouse lens construction. It is verified that when the single prism rows are incoherently illuminated they can be operated as independent micro‐lenses with coinciding image positions for efficient X‐ray beam concentration. Experimental data for the line width and the refraction efficiency in one‐dimensional focusing are consistent with the expectations. Imperfections in the structures produced by state‐of‐the‐art deep X‐ray lithography directed only 35% of the incident intensity away from the image and widened it by just 10% to 125 µm. An array of micro‐lenses with easily feasible prism sizes is proposed as an efficient retrofit for the refocusing optics in an existing beamline, where it would provide seven‐fold flux enhancement.  相似文献   

17.
A new method of phase‐shifting digital holography is demonstrated in the hard X‐ray region. An in‐line‐type phase‐shifting holography setup was installed in a 6.80 keV hard X‐ray synchrotron beamline. By placing a phase plate consisting of a hole and a band at the focusing point of a Fresnel lens, the relative phase of the reference and objective beams could be successfully shifted for use with a three‐step phase‐shift algorithm. The system was verified by measuring the shape of a gold test pattern and a silica sphere.  相似文献   

18.
X射线组合折射透镜(CRL)已逐步成为同步辐射光源下X射线聚焦光学器件的标准配件之一,它具有结构紧凑、易调节校准、适用光子能量范围大等优点.本文设计了一种级联式平面抛物面型CRL,它将N1个具有较大抛物面几何孔径(R0)的折射单元I与N2个具有较小抛物面顶点曲率半径(R)的折射单元II级联,以解决常规CRL设计过程中焦斑尺寸与透过率的矛盾.采用PMMA材料,利用LIGA技术制作了一组级联式平面抛物面型CRL,其中折射单元I的主要结构参数为N1=15,R1=200μm,2R01=564μm;折射单元II的主要结构参数为N2=20,R2=50μm,2R02=140μm.在上海光源同步辐射线束上,所制作的级联式平面抛物面型CRL实现了对初始光斑尺寸为200μm×100μm的入射X射线的一维聚焦,测试得到的焦距为1.052 m,横向焦斑尺寸为24.9μm@8 keV,透过率为2.19%.  相似文献   

19.
The implementation of a laser pump/X‐ray probe scheme for performing picosecond‐resolution X‐ray diffraction at the 1W2B wiggler beamline at Beijing Synchrotron Radiation Facility is reported. With the hybrid fill pattern in top‐up mode, a pixel array X‐ray detector was optimized to gate out the signal from the singlet bunch with interval 85 ns from the bunch train. The singlet pulse intensity is ~2.5 × 106 photons pulse?1 at 10 keV. The laser pulse is synchronized to this singlet bunch at a 1 kHz repetition rate. A polycapillary X‐ray lens was used for secondary focusing to obtain a 72 µm (FWHM) X‐ray spot. Transient photo‐induced strain in BiFeO3 film was observed at a ~150 ps time resolution for demonstration.  相似文献   

20.
Point focusing measurements using pairs of directly bonded crossed multilayer Laue lenses (MLLs) are reported. Several flat and wedged MLLs have been fabricated out of a single deposition and assembled to realise point focusing devices. The wedged lenses have been manufactured by adding a stress layer onto flat lenses. Subsequent bending of the structure changes the relative orientation of the layer interfaces towards the stress‐wedged geometry. The characterization at ESRF beamline ID13 at a photon energy of 10.5 keV demonstrated a nearly diffraction‐limited focusing to a clean spot of 43 nm × 44 nm without significant side lobes with two wedged crossed MLLs using an illuminated aperture of approximately 17 µm × 17 µm to eliminate aberrations originating from layer placement errors in the full 52.7 µm × 52.7 µm aperture. These MLLs have an average individual diffraction efficiency of 44.5%. Scanning transmission X‐ray microscopy measurements with convenient working distances were performed to demonstrate that the lenses are suitable for user experiments. Also discussed are the diffraction and focusing properties of crossed flat lenses made from the same deposition, which have been used as a reference. Here a focal spot size of 28 nm × 33 nm was achieved and significant side lobes were noticed at an illuminated aperture of approximately 23 µm × 23 µm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号