首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method of harmonics rejection based on X‐ray refractive optics has been proposed. Taking into account the fact that the focal distance of the refractive lens is energy‐dependent, the use of an off‐axis illumination of the lens immediately leads to spatial separation of the energy spectrum by focusing the fundamental harmonic at the focal point and suppressing the unfocused high‐energy radiation with a screen absorber or slit. The experiment was performed at the ESRF ID06 beamline in the in‐line geometry using an X‐ray transfocator with compound refractive lenses. Using this technique the presence of the third harmonic has been reduced to 10?3. In total, our method enabled suppression of all higher‐order harmonics to five orders of magnitude using monochromator detuning. The method is well suited to third‐generation synchrotron radiation sources and is very promising for the future ultimate storage rings.  相似文献   

2.
A new prism‐array lens for high‐energy X‐ray focusing has been constructed using an array of different prisms obtained from different parabolic structures by removal of passive parts of material leading to a multiple of 2π phase variation. Under the thin‐lens approximation the phase changes caused by this lens for a plane wave are exactly the same as those caused by a parabolic lens without any additional corrections when they have the same focal length, which will provide good focusing; at the same time, the total transmission and effective aperture of this lens are both larger than those of a compound kinoform lens with the same focal length, geometrical aperture and feature size. This geometry can have a large aperture that is not limited by the feature size of the lens. Prototype nickel lenses with an aperture of 1.77 mm and focal length of 3 m were fabricated by LIGA technology, and were tested using CCD camera and knife‐edge scan method at the X‐ray Imaging and Biomedical Application Beamline BL13W1 at Shanghai Synchrotron Radiation Facility, and provided a focal width of 7.7 µm and a photon flux gain of 14 at an X‐ray energy of 50 keV.  相似文献   

3.
Focusing planar refractive mosaic lenses based on triangular prism microstructures have been used as an alternative approach for wide‐bandpass monochromatization of high‐energy X‐rays. The strong energy dependence of the refractive index of the lens material leads to an analogous energy dependence of the focal length of the lens. The refractive mosaic lens, in comparison with the refractive lens of continuous parabolic profile, is characterized by a higher aperture because of reduced passive material. In combination with a well defined pinhole aperture in the focal plane, the transmittance of photons of an appropriate energy can be relatively high and photons of deviating energy can be efficiently suppressed. The photon energy can be tuned by translating the pinhole along the optical axis, and the bandwidth changed by selecting appropriate pinhole aperture and beam stop. This method of monochromatization was realised at the ANKA FLUO beamline using a mosaic lens together with a 20 µm pinhole and beam stop. An energy resolution of 2.0% at 16 keV has been achieved.  相似文献   

4.
The X‐ray lens, which is composed of opposing canted saw‐tooth structures, originally assembled from cut‐out pieces from long‐playing records, is understood by recognizing that an incident plane X‐ray wave will traverse a varying number of triangular prisms in them. The refraction will deflect any beam towards the prism tips and the variation of the deflection angle, which grows linearly with the number of traversed prisms, can result in X‐ray focusing. The structure offers focusing flexibility by simply changing the taper angle. This report will discuss the aberrations arising in the saw‐tooth structure in its simplest form with identical prisms. It is found that the saw‐tooth structures in low‐Z materials with focal length below 1 m provide less flux density in the focal spot than stacks of one‐dimensionally focusing refractive lenses with identical transmission function. This is due to excessive aberrations in the regular structure, which are absent in stacks of concave lenses, and which limit the focusing to spot sizes of just submicrometre dimensions, as measured experimentally for some lenses. It will be shown that this limitation can be overcome by appropriately modifying the prism shape. Then the image size could be reduced by about an order of magnitude to the diffraction limit with competitive numbers even below 0.1 µm. Microfabrication techniques are identified as the appropriate means for producing the structures.  相似文献   

5.
The X‐ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi‐purpose high‐energy X‐ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double‐Laue crystal monochromator to provide X‐rays over a large energy range (30–70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi‐lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.  相似文献   

6.
Refractive lenses focus X‐rays chromatically owing to a significant variation of the refractive index of the lens material with photon energy. Then, in combination with an exit slit in the focal plane, such lenses can be used as monochromators. The spectral resolution obtainable with refractive lenses based on prism arrays was recently systematically investigated experimentally. This contribution will show that a wide‐bandpass performance can be predicted with a rather simple analytical approach. Based on the good agreement with the experimental data, one can then more rapidly and systematically optimize the lens structure for a given application. This contribution will then discuss more flexible solutions for the monochromator operation. It will be shown that a new monochromator scheme could easily provide tuning in a fixed‐exit slit.  相似文献   

7.
The research program at the biomedical imaging facility requires a high‐flux hard‐X‐ray monochromator that can also provide a wide beam. A wide energy range is needed for standard radiography, phase‐contrast imaging, K‐edge subtraction imaging and monochromatic beam therapy modalities. The double‐crystal Laue monochromator, developed for the BioMedical Imaging and Therapy facility, is optimized for the imaging of medium‐ and large‐scale samples at high energies with the resolution reaching 4 µm. A pair of 2 mm‐thick Si(111) bent Laue‐type crystals were used in fixed‐exit beam mode with a 16 mm vertical beam offset and the first crystal water‐cooled. The monochromator operates at energies from 25 to 150 keV, and the measured size of the beam is 189 mm (H) × 8.6 mm (V) at 55 m from the source. This paper presents our approach in developing a complete focusing model of the monochromator. The model uses mechanical properties of crystals and benders to obtain a finite‐element analysis of the complete assembly. The modeling results are compared and calibrated with experimental measurements. Using the developed analysis, a rough estimate of the bending radius and virtual focus (image) position of the first crystal can be made, which is also the real source for the second crystal. On the other hand, by measuring the beam height in several points in the SOE‐1 hutch, the virtual focus of the second crystal can be estimated. The focusing model was then calibrated with measured mechanical properties, the values for the force and torque applied to the crystals were corrected, and the actual operating parameters of the monochromator for fine‐tuning were provided.  相似文献   

8.
A novel high‐energy multi‐lens interferometer consisting of 30 arrays of planar compound refractive lenses is reported. Under coherent illumination each lens array creates a diffraction‐limited secondary source. Overlapping such coherent beams produces an interference pattern demonstrating strong longitudinal functional dependence. The proposed multi‐lens interferometer was tested experimentally at the 100 m‐long ID11 ESRF beamline in the X‐ray energy range from 30 to 65 keV. The interference pattern generated by the interferometer was recorded at fundamental and fractional Talbot distances. An effective source size (FWHM) of the order of 15 µm was determined from the first Talbot image, proving the concept that the multi‐lens interferometer can be used as a high‐resolution tool for beam diagnostics.  相似文献   

9.
《X射线光谱测定》2004,33(6):455-461
Alligator lenses, i.e. two inclined arrays of sawteeth or prisms, which face each other, can focus x‐rays with photon energies >4 keV. The inclination angle can be changed easily, and thus either the focal length for fixed photon energy or the photon energy in a fixed slit position can be varied. The material distribution in this condition is approximately parabolic along the teeth axis, hence it is of the shape required for aberration‐free focusing at a given photon energy. As the refractive index varies significantly with photon energy in the x‐ray range, these lenses suffer from chromatic aberrations, if illuminated with white x‐rays. In combination with a slit such a lens can therefore be used as an easily insertable inline monochromator. In this work, a simple universal function for the dependence of the transmission on the photon energy was derived for this application. The required tolerances for the shape of the sawteeth are found to be compatible with standard workshop machining procedures. A laboratory‐made lens of Plexiglas is shown to increase the flux density in a laboratory setup by a factor of 3, i.e. 50% of the expected result for a perfect lens. The discrepancy can be consistently ascribed to macroscopic defects of the sawteeth tips. Expectations for the performance of these lenses as monochromators at synchrotron radiation sources are presented. A single Be alligator lens is expected to provide tuning between at least 8 keV and 20 keV photon energy with a bandpass of 6%, sufficient for XRF and SAXS experiments. Consequently, such a lens pair is all that is needed for building simple synchrotron radiation beamlines for special x‐ray experiments. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
An X‐ray Raman spectrometer for studies of local structures in minerals is discussed. Contrary to widely adopted back‐scattering spectrometers using ≤10 keV X‐rays, a spectrometer utilizing ~20 keV X‐rays and a bent Laue analyzer is proposed. The 20 keV photons penetrate mineral samples much more deeply than 10 keV photons, so that high intensity is obtained owing to an enhancement of the scattering volume. Furthermore, a bent Laue analyzer provides a wide band‐pass and a high reflectivity, leading to a much enhanced integrated intensity. A prototype spectrometer has been constructed and performance tests carried out. The oxygen K‐edge in SiO2 glass and crystal (α‐quartz) has been measured with energy resolutions of 4 eV (EXAFS mode) and 1.3 eV (XANES mode). Unlike methods previously adopted, it is proposed to determine the pre‐edge curve based on a theoretical Compton profile and a Monte Carlo multiple‐scattering simulation before extracting EXAFS features. It is shown that the obtained EXAFS features are reproduced fairly well by a cluster model with a minimal set of fitting parameters. The spectrometer and the data processing proposed here are readily applicable to high‐pressure studies.  相似文献   

11.
Point focusing measurements using pairs of directly bonded crossed multilayer Laue lenses (MLLs) are reported. Several flat and wedged MLLs have been fabricated out of a single deposition and assembled to realise point focusing devices. The wedged lenses have been manufactured by adding a stress layer onto flat lenses. Subsequent bending of the structure changes the relative orientation of the layer interfaces towards the stress‐wedged geometry. The characterization at ESRF beamline ID13 at a photon energy of 10.5 keV demonstrated a nearly diffraction‐limited focusing to a clean spot of 43 nm × 44 nm without significant side lobes with two wedged crossed MLLs using an illuminated aperture of approximately 17 µm × 17 µm to eliminate aberrations originating from layer placement errors in the full 52.7 µm × 52.7 µm aperture. These MLLs have an average individual diffraction efficiency of 44.5%. Scanning transmission X‐ray microscopy measurements with convenient working distances were performed to demonstrate that the lenses are suitable for user experiments. Also discussed are the diffraction and focusing properties of crossed flat lenses made from the same deposition, which have been used as a reference. Here a focal spot size of 28 nm × 33 nm was achieved and significant side lobes were noticed at an illuminated aperture of approximately 23 µm × 23 µm.  相似文献   

12.
Parabolic 3D refractive lenses from shape memory polymers were manufactured and tested using monochromatic X‐rays of 10 keV. Four lenses in two sets with focal distances of about 6 and 4 m were used. The lens optical properties in terms of resolution, efficiency and gain were measured. The radiation stability test was performed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Performance tests of parabolic beryllium refractive lenses, considered as X‐ray focusing elements in the future X‐ray free‐electron laser oscillator (XFELO), are reported. Single and double refractive lenses were subject to X‐ray tests, which included: surface profile, transmissivity measurements, imaging capabilities and wavefront distortion with grating interferometry. Optical metrology revealed that surface profiles were close to the design specification in terms of the figure and roughness. The transmissivity of the lenses is >94% at 8 keV and >98% at 14.4 and 18 keV. These values are close to the theoretical values of ideal lenses. Images of the bending‐magnet source obtained with the lenses were close to the expected ones and did not show any significant distortion. Grating interferometry revealed that the possible wavefront distortions produced by surface and bulk lens imperfections were on the level of ~λ/60 for 8 keV photons. Thus the Be lenses can be succesfully used as focusing and beam collimating elements in the XFELO.  相似文献   

14.
X‐ray free‐electron lasers (XFELs) generate sequences of ultra‐short spatially coherent pulses of X‐ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E? 2 × 10?6, is proposed. This is much better than for most modern X‐ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single‐crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV.  相似文献   

15.
The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X‐ray beam to spatially overlap with an 80 µm‐high low‐density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm?2 was calculated. A CRL is chromatic so it does not efficiently focus X‐rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment. A two‐chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X‐ray filter. A method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.  相似文献   

16.
For the first time, single‐crystal diamond planar refractive lenses have been fabricated by laser micromachining in 300 µm‐thick diamond plates which were grown by chemical vapour deposition. Linear lenses with apertures up to 1 mm and parabola apex radii up to 500 µm were manufactured and tested at the ESRF ID06 beamline. The large acceptance of these lenses allows them to be used as beam‐conditioning elements. Owing to the unsurpassed thermal properties of single‐crystal diamond, these lenses should be suitable to withstand the extreme flux densities expected at the planned fourth‐generation X‐ray sources.  相似文献   

17.
Advances in resonant inelastic X‐ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3‐edge stands at ~25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid‐angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3‐absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X‐ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27‐ID at the Advanced Photon Source. X‐rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X‐ray measurements, ray‐tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high‐resolution RIXS multi‐crystal analyzer system.  相似文献   

18.
A focusing system based on a polycapillary half‐lens optic has been successfully tested for transmission and fluorescence µ‐X‐ray absorption spectroscopy at a third‐generation bending‐magnet beamline equipped with a non‐fixed‐exit Si(111) monochromator. The vertical positional variations of the X‐ray beam owing to the use of a non‐fixed‐exit monochromator were shown to pose only a limited problem by using the polycapillary optic. The expected height variation for an EXAFS scan around the Fe K‐edge is approximately 200 µm on the lens input side and this was reduced to ~1 µm for the focused beam. Beam sizes (FWHM) of 12–16 µm, transmission efficiencies of 25–45% and intensity gain factors, compared with the non‐focused beam, of about 2000 were obtained in the 7–14 keV energy range for an incoming beam of 0.5 × 2 mm (vertical × horizontal). As a practical application, an As K‐edge µ‐XANES study of cucumber root and hypocotyl was performed to determine the As oxidation state in the different plant parts and to identify a possible metabolic conversion by the plant.  相似文献   

19.
The possibility of using a parabolic refractive lens with initial X‐ray free‐electron laser (XFEL) pulses, i.e. without a monochromator, is analysed. It is assumed that the measurement time is longer than 0.3 fs, which is the time duration of a coherent pulse (spike). In this case one has to calculate the propagation of a monochromatic wave and then perform an integration of the intensity over the radiation spectrum. Here a general algorithm for calculating the propagation of time‐dependent radiation in free space and through various objects is presented. Analytical formulae are derived describing the properties of the monochromatic beam focused by a system of one and two lenses. Computer simulations show that the European XFEL pulses can be focused with maximal efficiency, i.e. as for a monochromatic wave. This occurs even for nanofocusing lenses.  相似文献   

20.
Two crystals with precise parabolic holes were used to demonstrate sagittal beam collimation by means of a diffractive–refractive double‐crystal monochromator. A new approach is introduced and beam collimation is demonstrated. Two Si(333) crystals with an asymmetry angle of α = 15° were prepared and arranged in a dispersive position (+,?,?,+). Based on theoretical calculations, this double‐crystal set‐up should provide tunable beam collimation within an energy range of 6.3–18.8 keV (ΘB = 71–18.4°). An experiment study was performed on BM05 at ESRF. Using 8.97 keV energy, the beam profile at various distances was measured. The experimental results are in good agreement with theoretical predictions. Owing to insufficient harmonic suppression, the collimated (333) beam was overlapped by horizontally diverging (444) and (555) beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号